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ABSTRACT

The controlled fabrication of nanometer scale devices is of fundamental concern for 

numerous technologies, from separations to electronics and catalysis. The complexity of 

device architectures calls for the development of synthetic methods that independently 

control each feature: pore dimensions, wall thickness, and any subsequent functional 

nanomaterial layers (e.g. photoactive electrocatalysts). Precision control over these 

orthogonal methods can be used to integrate 3D and 1D nanostructures. 

This dissertation presents the development of techniques useful in fabricating highly 

controlled nanoscale devices. The growth of single-phase bismuth vanadate (BiVO4) by 

atomic layer deposition (ALD) is demonstrated for the first time, allowing for the 

conformal growth of ultrathin BiVO4 on arbitrary substrates. A new tin oxide underlayer 

(SnO2) was developed to act as a hole-blocking underlayer concomitantly with ultrathin 

BiVO4 is to fabricate space-efficient photoanodes on a high-aspect ratio 3D substrate, 

combining the advantages gained by reducing BiVO4 thickness and preserving optical 

thickness. The heterojunction SnO2/BiVO4 space-efficient photoanode achieved the 

highest reported applied-bias photon-to-charge efficiency for any photoanode material 

synthesized via ALD. Lastly, the first demonstration of persistent micelle templates (PMT) 

with carbonaceous materials is reported, demonstrating independent control over important 

feature sizes, such as wall thickness and pore size, to adjust the capacity and 

charge/discharge rates of carbon-based supercapacitors. 
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CHAPTER 1: 

INTRODUCTION AND BACKGROUND
1 

 

                                                 
1 Adapted with permission from Lamm, B.; Trześniewski, B.; Döscher, H.; Smith, W.; Stefik, M. ACS Energy 

Lett. 2018, 3, 112-124. Copyright 2018 American Chemical Society. 



www.manaraa.com

2 

Research Objective 

Controlled fabrication of nanometer-scale structures in devices is of fundamental 

concern for numerous technologies, such as electronics, catalysis, or purification. Multiple 

transport events occur at various locations within device architecture, requiring discrete 

control over independent features of mesoporous materials (Figure 1.1). For example, the 

rate of diffusion for catalyst reactants and products like water and oxygen is affected by 

the pore size (Figure 1.1a). If the pore is too small, compounds are slow to diffuse to the 

catalyst surface or are unable to reach exposed surfaces at all; alternatively, if the pores are 

too large, then the space is not efficiently utilized, lowering the overall efficiency of the 

device. Additionally, the thickness of the active layer (Figure 1.1c) is selected by balancing 

carrier transport properties, such as the charge carrier separation efficiencies, and 

absorptivity; and the wall thickness of the porous structure (Figure 1.1b) is optimized based 

on space efficiency and conductivity, where thicker walls generally improve conductivity 

while increased volume of inactive material lowers the space efficiency. Control over these 

device dimensions can be achieved through multiple routes, including soft templating with 

block-copolymers and atomic layer deposition. In these examples, block polymer templates 

can create structures with high levels of organization on the nanometer scale whereas 

atomic layer deposition (ALD) can infiltrate such structures to grow uniform ultrathin 

coatings. 
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Functional materials, such as electrocatalysts, operate on a balance of pathways for 

concomitant processes. In photoelectrochemical (PEC) water splitting, sunlight is used to 

drive the formation of oxygen and hydrogen gasses from water. In the case of bismuth 

vanadate (BiVO4), a short electron transport length (~70 nm) requires a thin layer of 

material to improve electronic efficiency while an optical absorption length of ~700 nm 

requires a far higher optical thickness.1 The mismatch between these two defining feature 

sizes, requiring simultaneously thin physical layers with high optical thickness, inspired 

the development of ultrathin BiVO4 on high-aspect ratio substrates. Typical methods utilize 

variations on the sol-gel process common in metal organic synthesis or multi-step 

electrodepositions;2 however, despite significant improvements to performance, precise 

control over the appropriate dimensions could not be achieved by these methods, especially 

in conjunction with “hole-blocking” underlayers (such as SnO2) that have been used to 

improve electron transfer efficiencies. This dissertation addresses this mismatch by 

demonstrating the first ALD deposition of single-phase BiVO4 and utilizing it in space-

Figure 1.1: Scheme depicting relevant feature sizes and transport events. The size of pores (a) and 

walls (b) are set during synthesis of the blue conductive substrate, while the thickness of the active 

material (c) is controlled by the active layer deposition process. These features directly affect the 

efficiencies of transport processes, such as (i) diffusion of catalyst substrates and products to and 

from the surface, separation of (ii) holes and (iii) electrons within the active material, and (iv) 

conduction of electrons to the circuit within the substrate. 
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efficient heterojunction photoanodes for solar water splitting.3,4 Background for these 

topics will be further described later in this chapter. 

In another direction, block copolymers have been used in persistent micelle templating 

(PMT) to organize tunable mesoporous carbons, allowing independent control over pore 

size and wall thickness for these devices. Organic templates such as block copolymers 

(BCPs) have been used as structure directing agents to synthesize mesoporous metal oxides 

and carbons for several decade.5 However, this method of soft templating has historically 

suffered from two major problems. As BCPs self-assemble to equilibrium-driven 

morphologies, changing the loading of metal oxide precursors causes a shift in the resulting 

morphology (1) such that the final structure dimensions – e.g. pore and wall thickness – 

change dependently with precursor loading. Secondly, changes to solvent conditions can 

cause a shift in the equilibrium phase (2) such that the final morphology structured can 

shift dramatically. To expand the utility of soft-templating methods, persistent micelle 

templating (PMT) was developed.5–8 This technique allows the independent tuning of wall 

thickness and pore size of templated metal oxides. However, PMT to date has only been 

demonstrated for metal oxide templating (e.g. TiO2, Nb2O5) and is sensitive to solvent 

conditions, primarily water content.5,7 This dissertation discusses the development of 

carbon PMT (CPMT) using glassy-core micelles and phenolic carbon precursors. 

Dissertation Outline 

This dissertation focuses on the controlled fabrication of nanoscale materials employing 

(1) the development of SF-ALD for the growth of single-phase BiVO4 for 

photoelectrochemical water splitting, (2) the utilization of ultrathin BiVO4 and SnO2 in 

space-efficient photoanodes, and (3) PMT of carbonaceous materials for tunable porous 

carbon electrodes. The primary discussion follows the development a novel synthesis for 
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thin layers of BiVO4 for use as a photoanode, culminating in the construction of a space-

efficient heterojunction photoanode. The secondary discussion examines the expansion of 

PMT to carbon-based devices, demonstrating for the first time the independent control of 

wall thickness and pore size in porous carbons. 

Following this outline, the remainder of this chapter will be devoted to providing 

background on the researches on BiVO4 as a photoelectrode. Topics therein include a brief 

overview of BiVO4 as used in solar water splitting with a more in-depth discussion of 

postsynthetic improvements to BiVO4 photoanodes. These changes affect either charge 

injection or charge separation efficiencies, resulting in distinct chemical changes that are 

difficult to identify with traditional characterization techniques. 

In Chapter 2, the atomic layer deposition of bismuth vanadates is improved by a surface-

functionalization step during deposition (SF-ALD) resulting in the first ALD process for 

single-phase scheelite BiVO4. Besides the synthetic novelty of this technique, this study 

also identifies a photoelectrochemical activation technique that results in a threefold 

improvement to charge separation. These improvements are tentatively attributed to 

changes in oxidation state of bismuth and vanadium defects within BiVO4. 

Chapter 3 utilizes the SF-ALD of BiVO4 in a heterojunction photoanode with tin oxide 

(SnO2) to realize space efficient host-guest photoanodes. The utilization of ALD for 

synthesis of both SnO2 and BiVO4 resulted in a lower SnO2 defect density than is observed 

in SnO2 synthesized via spray pyrolysis or spin coating, allowing for a significantly thinner 

underlayer (8 nm vs 65-80 nm). This ultrathin underlayer film is especially of interest in 

high aspect ratio substrates, such as antimony-doped tin oxide nanotubes (ATO NTs), 

greatly improving the space efficiency of SnO2/BiVO4 heterojunction photoanodes. The 
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final host-guest architectures were demonstrated to achieve an applied bias photon-to-

charge efficiency of 0.71%, a new record for a photoanode absorber prepared by ALD. 

Whereas Chapters 2 and 3 are devoted to the controlled conformal deposition of BiVO4 

via ALD, Chapter 4 focuses on the fabrication of porous carbons with independent control 

over wall thickness and pore size. Synthetically this is achieved by condensation 

polymerization of resorcinol and formaldehyde in the presence of persistent micelle 

templates. Future directions of development of this concept are discussed. 

Finally, this dissertation will conclude with a summary of the results and possible future 

works in Chapter 5. Collectively, this dissertation discusses the improved structure control 

for nanometer-scale porous materials. 

Background on BiVO4 Research: Emerging Postsynthetic Improvements of BiVO4 

Photoanodes for Solar Water Splitting 

Abstract 

Solar-assisted water splitting with bismuth vanadate (BiVO4) photoanodes has 

progressed significantly with many efforts devoted to improving charge separation and 

surface charge injection through synthetic methods, including dopants and catalytic layers. 

In contrast, postsynthetic treatments occur after the synthesis of electrodes. Recently, such 

postsynthetic treatments based upon illumination, chemistry, electrochemistry, or 

combinations thereof have led to dramatic improvements in the performance and efficiency 

of BiVO4 photoanodes. This perspective summarizes recent BiVO4 postsynthetic 

treatments with mechanistic details and highlights important future directions. One broad 

challenge is that multiple interpretations of defect changes may be consistent with routine 

XPS data. Further experiments are suggested to better differentiate between the proposed 

defect changes. Also, performance changes are considered separately with respect to 

charge separation and charge injection efficiencies as well as within the context of known 
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synthetic modifications. The emergence of postsynthetic treatments highlights new 

opportunities to understand and improve photoelectrodes. Similar mechanisms may be of 

further utility as researchers turn more focus towards the development of novel multinary 

metal oxide photoabsorbers to produce solar fuels. Lastly, postsynthetic treatments also 

elucidate possible electrode changes under extended service and can provide new strategies 

to enable extended device performance. 

Introduction 

Monoclinic bismuth vanadate (BiVO4) is a promising and widely studied photoanode 

for solar-assisted water splitting,9,10 made from cheap source compounds. BiVO4 has an 

indirect bandgap energy of approximately 2.4-2.5 eV (~500-520 nm band edge),2,11 with 

absorption into the visible and UV range of light, and with a maximum theoretical 

photocurrent of ~7 mA cm-2 under 1 sun AM 1.5G illumination. Additionally, a wider 

direct bandgap (ca. 2.7 eV) is also present in BiVO4.
11 The conduction band edge (CB) lies 

near 0 VRHE (versus reversible hydrogen electrode), placing the valence band edge (VB) 

near 2.4 VRHE, and providing significant excess potential for holes to photooxidize water 

while electrons maintain a potential appropriate for hydrogen evolution at the counter 

electrode with moderate external bias. A thorough review of BiVO4 photoelectrochemical 

(PEC) properties and challenges was recently published.2 Postsynthetic treatments have 

recently emerged as a way to significantly improve PEC performance with treatments that 

occur after the synthesis of electrodes. These postsynthetic treatments are based upon 

illumination, chemistry, electrochemistry, or combinations thereof, improving the PEC 

performance of active materials in ways that typically cannot be achieved via direct 

fabrication methods. This perspective highlights recent findings with BiVO4 postsynthetic 

treatments and identifies important avenues of future inquiries.  
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The efficiency of solar fuels production requires consideration of both the photocurrent 

and the applied voltage bias. The role of photocurrent is apparent and linearly scales with 

the energy stored. Most oxide-based PEC devices require some externally applied voltage 

bias (Eapp). Thus, the resulting fuel contains energy from both the external voltage source 

and the PEC device itself. The use of excessive bias voltage diminishes the balance of solar 

energy stored. The applied bias photon-to-current efficiency (ABPE) takes this important 

applied potential into account when expressing the efficiency of conversion from solar to 

chemical energy:12,13 

ABPE(%) = [
(Jphoto)(mA cm−2)×(Erc−Eapp)(V)

Pphoto(mW cm−2)
]

AM 1.5G

× 100       (1.1) 

where Jphoto is the measured photocurrent at a particular applied potential (Eapp), Pphoto is 

the power density of AM 1.5G (100 mW cm-2), and Erc corresponds to the cell potential of 

the redox couple; 1.23 VRHE corresponds to the standard cell potential for water splitting.2 

It is important to distinguish between the ABPE calculated with a 2-electrode configuration 

(Eapp is between the working and counter electrodes) for overall water-splitting ABPE 

versus the ABPE calculated with a 3-electrode configuration (Eapp is between the working 

and reference electrodes). The ABPE values in Figure 1.2b were calculated from 3-

electrode data to provide a level comparison between samples since 3-electrode data is the 

most readily available in publications. Photocurrents as high as 6.7 mA cm-2 (~90% of the 

theoretical limit) have been reported for BiVO4 with Eapp=1.23 VRHE;14 however, operation 

at this voltage corresponds to an ABPE of 0% (Figure 1.2a).3 Including both photocurrent 

and applied voltage shows maximum demonstrated ABPE values of 2.2-2.3% for BiVO4 

                                                 
2 Other units may be appropriately used. 
3 Data were extracted from published figures using ScanIt 2.0 software. 
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(Figure 1.2b; 0.6 VRHE, 3.2-3.4 mA cm-2).13,15 A simple theoretical upper limit of 6.4-7.7% 

ABPE for water splitting may be estimated by considering the theoretical photocurrent 

limit (6.2-7.5 mA cm-2 for a bandgap of 2.5-2.4 eV, respectively) and band positions 

(neglecting HER and OER overpotential losses; i.e. photocurrent saturation at 0.2 VRHE 

with 100% fill factor). Clearly, there remains much room for ABPE improvement by 

focusing on improving low-bias-voltage operation. Design strategies should thus work to 

maximize both charge separation and charge injection of BiVO4 with low applied bias 

voltage. 

 

 
 

 
 

Overview of photoelectrochemical processes in BiVO4 

For any photoelectrode material, the overall PEC performance, measured by Jphoto, is 

determined by the combination of several phenomena, including the charge separation 

efficiency, the charge injection efficiency, and light harvesting efficiency (LHE), and can 

be expressed as follows (Equation 1.2). Here, Jabs is the photon absorption rate expressed 

as a current density (determined from LHE and the illumination spectrum), and φsep and 

Figure 1.2 a) J-V characteristics of BiVO4 photoanodes and b) applied bias photocurrent 

conversion efficiencies of high performing BiVO4-based photoanodes. All data were 

obtained with a 3-electrode configuration to exclude variable counter electrode 

contributions. 
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φinj are the charge separation and charge injection efficiencies, respectively (Figure 

1.3a).16,17 

Jphoto(V) = Jabs ∙ ϕsep(V) ∙ ϕinj(V)     (1.2) 

For pure BiVO4, φsep is often limited by bulk recombination and trapping of charge carriers 

(Figure 1.3b)18–23 whereas φinj is typically limited by slow water oxidation kinetics and 

surface recombination (Figure 1.3c), although these can effectively be mitigated with the 

addition of co-catalyst layers.24–26 The efficiency of each step is dependent on physical and 

chemical processes within the bulk or at the surface of the material. The relative rates of 

water oxidation (kwo) and recombination (krec) determine the charge injection efficiency 

φinj at the surface (assuming 100% faradaic efficiency) (Equation 1.3).24,26 

ϕinj(V) =
kwo(V)

krec(V)+kwo(V)
     (1.3) 

Charge separation is accomplished by a combination of drift from an external applied 

potential or from the internal potential from the space charge layer (SCL), as well as 

diffusive charge transport. For pristine (undoped) BiVO4, the SCL width can be as high as 

90 nm;24 this would enhance φsep of very thin, <90 nm, films. In contrast, thicker films 

(>200 nm) are needed to achieve reasonable LHE values, dimensions where φsep is 

considerably reduced since most carriers are produced outside of the SCL. This may be 

mitigated by enhancing the extent of band bending with gradient-doping.27 Use of a large 

external bias voltage can enhance charge separation at the cost of significant loss of overall 

ABPE. The separation of charge carriers produced far from the SCL is limited by low 

carrier conductivity as well as recombination sites within the film or at the substrate-BiVO4 

interface.18,20 Here, since BiVO4 is normally operated with bias voltage, improvements to 
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conductivity (product of mobility and carrier concentration) can improve charge 

separation. 

 

 
 

 
 

Defining synthetic vs. postsynthetic modification 

Synthetic strategies to improve the PEC properties of BiVO4 – such as nanostructuring 

films, designing heterostructures, applying oxygen evolution catalysts (OECs), adding 

dopants to BiVO4, among others – have been developed and used to great effect, and were 

reviewed elsewhere.2,28,29 Postsynthetic treatments have been concurrently developed and 

have enabled many of the highest photocurrents reported to date.13–15 These treatments are 

applied after the synthesis of BiVO4, and are based upon illumination, chemistry, 

electrochemistry, or combinations thereof. Postsynthetic treatments are intended to modify 

the defect chemistry of existing material rather than to deposit additional material. For this 

reason, treatments that deposit metallic elements are not considered as postsynthetic 

treatments. For example, here we consider annealing BiVO4 under H2 or N2 gases to be 

postsynthetic treatments whereas the deposition of passivation or catalytic layers (e.g. 

Figure 1.3 For solid films, there is a trade-off between light harvesting efficiency and 

charge separation efficiency. Band diagrams of BiVO4 showing step-wise processes 

towards water splitting with b) light harvesting and charge separation (φsep) followed by c) 

charge injection (φinj). The green paths support water splitting whereas the red paths are 

loss pathways. 



www.manaraa.com

12 

FeOOH, CoPi, etc.) is a synthetic treatment. Broadly, postsynthetic treatments affect φsep, 

φinj, or both to improve the overall ABPE performance of BiVO4. 

An electrochemical treatment of Mo:BiVO4 was reported in 2011;30 this was followed 

by H2-annealed BiVO4 in 2013 and subsequent followups.31–34 In 2015, N2-annealed 

BiVO4 was demonstrated to attain one of the highest ABPEs on record,13 second only to a 

report on electrochemically-treated catalyzed BiVO4 in 2016.15 Two illumination-

dependent treatments, UV-curing and photocharging of BiVO4, were published in 

2015,35,36 with later follow-up reports.37,38 In 2016, a significantly accelerated PEC 

activation used a combination of light, electrolyte, and applied potential.3 

The defect changes during postsynthetic treatments are sometimes subject to multiple 

equivocal interpretations as many of the proposed mechanisms are consistent with the 

often-limited experimental data. For example, the addition of both hydrogen interstitials37 

and hydrogen anti-site on oxygen,33 and both the addition31 and removal33 of oxygen 

vacancies have been supported by similar shifts in vanadium X-ray photoelectron 

spectroscopy (XPS) data; such contradictory defect chemistries clearly require additional 

investigation. Multiple intrinsic defects (e.g. oxygen, bismuth, or vanadium vacancies (vO
••, 

vBi
′′′, and vV

′′′′′), interstitials (Oint
′′ , Biint

•••, and Vint
•••••), and anti-sites (BiV

′′ and VBi
••)) and 

extrinsic defects (e.g. hydrogen interstitial, Hint
• , or substitution, HO

•••) are proposed to exist 

in BiVO4, either directly after synthesis or after exposure to PEC conditions (i.e. 

illumination and electrolyte).33,34,37 Additionally, defect clusters – e.g. double or triple 

vacancies like vBi
′′′vO

••, vBi
′′′vO

••vBi
′′′, or vBr

• vBi
′′′vO

•• – are also proposed to affect the catalytic 

activity of semiconductor photoelectrodes.39 Differentiating between these numerous 

possible defect chemistries will require more detailed follow up studies using experimental 
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techniques that can probe local electronic environments, and subsequently study charge 

carrier kinetics to elucidate defect activity (e.g. as trap, donor, and/or catalytic sites). 

Furthermore, the synthetic route dependence on subsequent postsynthetic behaviors is 

rarely considered – is it not reasonable that the native material defects should affect the 

results of a postsynthetic treatment? 

The emergence of postsynthetic treatments highlights new opportunities to understand 

and improve photoelectrodes. Similar mechanisms may be of further utility as researchers 

turn more focus towards the development of novel multinary metal oxide photoabsorbers 

where, like BiVO4, there is a combinatorial expansion of the candidate point defect 

chemistries. Lastly, postsynthetic treatments also elucidate possible electrode changes 

under extended service and can provide new strategies to enable extended device 

performance. This perspective will provide an overview of a variety of reported 

postsynthetic treatments and attempt to describe unifying features between treatments as 

well as paths forward towards a deeper understanding. 

Postsynthetic improvement of charge separation 

Synthetic approaches to improve φsep are based on two main approaches: increasing the 

free carrier density by substituting V with higher valent metals (e.g. Mo, W)17,20,27,30,40–43 

and limiting recombination at the back-interface by adding “hole blocking layers,” such as 

SnO2 or WO3, between BiVO4 and the substrate.14,18–20,44,45 Postsynthetic techniques have 

recently emerged with similarly significant improvements to charge separation. 

Postsynthetic removal of recombination sites 

Bismuth vanadate photoelectrodes have been synthesized using numerous techniques 

including sol-gel,17,46 spray pyrolysis,18 electrodeposition and conversion,15,25,47 magnetron 

sputter deposition,43,48,49 chemical vapor deposition (CVD),50 and atomic layer deposition 
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(ALD),3,51 where each method results in varying performance, partially due to the nature 

of the inherent defects. The combination of mobility and carrier lifetime results in a limited 

~70 nm transport length of electrons within BiVO4, with holes able to diffuse farther.20 

This characteristic is why numerous BiVO4 publications report higher photocurrents with 

back-side illumination to minimize the transport distance for electrons. 

Many of these synthetic techniques have been utilized to minimize the transport lengths 

of charge carriers. The nanostructuring of pure BiVO4 improves minority (hole) carrier 

transport to the surface,15,25 whereas host-guest approaches are needed to improve electron 

transport to the substrate.14,45,52–55 Thus far, the methods used for the production of BiVO4 

host-guest nanostructures have all utilized non-uniform depositions or cathodic 

electrodepositions that limit the use of hole-blocking layers at the BiVO4-substrate 

interface.14,45,52,53 Atomic layer deposition (ALD) stands out as a method to fabricate 

conformal BiVO4 coatings within complex device architectures while retaining 

compatibility with hole-blocking layers and radial dopant profiles.51 Surface functionalized 

ALD (SF-ALD) was recently shown to enable phase pure scheelite BiVO4.
3 

The φsep of SF-ALD BiVO4 was remarkably sensitive to postsynthetic treatment. 

Postsynthetic enhancements were maximized with a treatment that involved exposing the 

sample to AM 1.5G simulated illumination while applying an external bias of 0.6 VRHE for 

1 h. Corresponding to this treatment (PEC activation), film optical absorptance decreased, 

φsep increased, and both absorbed and incident photon-to-charge efficiencies increased 

(APCE and IPCE, respectively; Figure 1.4a), with an increase of APBE from 0.18 to 0.28% 

for 75 nm-thick films in electrolyte with hole scavenger (sulfite, Erc = 0.93 VRHE in 

Equation 1.1).3,56 Note that φinj is assumed to be unity in the presence of hole scavenger; 
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no water oxidation data was presented. The simultaneous increase of transparency with 

photocurrent is counterintuitive given the relationship between LHE and photocurrent in 

Equation 1.2. This effect is attributed to the removal of metallic defects during treatment 

(vide infra), which is expected to improve φsep by removing photoabsorbing trap sites, thus 

decreasing the overall optical absorption. The postsynthetic enhancements were shown to 

be stable for at least 17 h. During PEC activation, an oxidative photocurrent was observed 

to increase and plateau; this was attributed to the combined oxidation of hole scavenger 

and BiVO4 defects. XPS (Figure 1.4b) analysis suggested that reduced metal defects in 

calcined SF-ALD samples (Bi0 and V4+) were fully oxidized (Bi3+ and V5+) following PEC 

activation. The ALD of bismuth titanates with the same Bi3+ precursor was previously 

shown to result in a mixture of Bi3+ and Bi0,57 highlighting the connection of synthetic 

route with point defect chemistries. Related postsynthetic treatments such as UV-curing 

and photocharging also involve illumination;36,37 however, control experiments 

demonstrated that the applied bias with PEC activation leads to larger improvements to φsep 

and occur much faster within 1 hr. The ability of bismuth vanadate to self-heal may explain 

its label as a “defect tolerant” material.20 More work is needed to establish the precise 

nature of the defects present in the untreated BiVO4, and to determine if any other 

phenomenon are taking place; e.g., hydrogen or proton uptake or surface state 

alteration.33,34,37 
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Annealing BiVO4 films in H2 was found to increase the concentration of V4+ species 

while removing or passivating trap states.31,33,34 H2-annealing has been demonstrated to 

improve the onset potential and photocurrent of the photoelectrodes (93 mV shift to onset 

potential and increase to photocurrent from 1.23 to 1.43 mA cm-2 at 1.23 VRHE between as-

grown and 290 oC H2-annealed BiVO4, respectively),31,33 corresponding to an increase in 

APBE for sulfite oxidation from 0.18 to 0.27% between as made and H2-annealed BiVO4. 

Optimal annealing conditions were reported as 15 min at 290 oC under 1 atm of H2.
33 H2 

annealing primarily improves φsep; however, a decrease in φinj was also reported,34 possibly 

Figure 1.4: Effect of a post-synthetic PEC activation treatment on 30 and 60 nm films 

prepared by SF-ALD; a) IPCE, b) APCE, and XPS of c) Bi 4f and d) V 2p comparing as-

made and activated SF-ALD BiVO4. Reproduced with permission from Reference 3 - 

Published by The Royal Society of Chemistry. 
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due to surface H affecting water oxidation kinetic activity.34,58,59 Additionally, changes to 

the surface hydroxyl (-OH) concentration were reported;32 such alterations were reported 

to affect φinj in BiVO4.
35,36 This treatment was found to improve photocurrent regardless 

of synthetic procedure,34 and was helpful in improving the photocurrent of other 

photoanode materials.60–62 In the initial report,31 density functional theory (DFT) 

calculations suggested that elemental H was occupying both interstitial and oxygen sites 

within the BiVO4 lattice, with both types of defects expected to act as shallow donors. A 

follow-up report identified two local hydrogen environments by 1H-NMR spectroscopy 

that were attributed to interstitial hydrogen (Hint) and substitutional hydrogen (HO).33 

Notably, HO also had a trace presence in as-made BiVO4. This was further supported by a 

second follow-up report that quantitatively analyzed the loading of hydrogen into BiVO4 

by 15N nuclear reaction analysis, finding about 5x the amount of hydrogen in annealed 

films (0.7 vs 0.14 at% for H-BiVO4 and BiVO4, respectively).34 Initially, the partial 

reduction of V from 5+ to 4+ was attributed to the formation of oxygen vacancies, vO.31 

However, subsequent investigations correlated H2-annealing to a reduced 

photoluminescence (attributed to removal of vO)33 and increase in charge carrier lifetime, 

suggesting a decrease in trap concentration by the removal or passivation of traps (proposed 

to be interstitial V or V anti-site on Bi, Vint or VBi).
34 Follow-up reports also agree on the 

presence of one of the aforementioned hydrogen defects (Hint, bonded to a bridging O), and 

that increasing the vO content is not the source of improved φsep. There remains some 

question as to the nature of the trap states removed or passivated (e.g. vO, Vint, or VBi).
33,34 

Furthermore, there is disagreement as to the effect of H2-annealing on charge carrier 

conductivity.33,34 Considering that both vO and HO can yield the same XPS observation of 
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partially reduced vanadium, follow up studies on hydrogenated photoelectrode materials 

would benefit by parsing the multiple causal pathways with further measurements such as 

electron energy loss spectroscopy (EELS)63–65 or X-ray absorption near edge structure 

(XANES)66 to probe changes to local electronic environment caused by specific defect 

chemistries. 

Postsynthetic production of free carriers 

Doping BiVO4 with metals and non-metals – commonly W and Mo – has been widely 

utilized to synthetically alter the carrier density and conductivity of BiVO4-based 

photoanodes.18,20,30,35,40–43,67 Recently, several postsynthetic techniques have been utilized 

to similarly increase free carrier density.13,15,68 It has been suspected that V4+ plays a role 

in the native conductivity of BiVO4 photoanodes,69 typically attributed to the formation of 

O vacancies (vO) as a shallow donor state.70 Consequently, several postsynthetic treatments 

have related effects to conductivity and ABPE to alterations in V oxidation state.15,31,68 

However, recent work has shown that the mobility of charge carriers in BiVO4 is not 

improved by increasing vo concentration,33,34 suggesting that an alternative mechanism 

may be present. 

To achieve one of the highest reported ABPEs, researchers activated their electrodes 

with a simple cyclic voltammetry treatment in alkaline media prior to depositing the 

catalytic Ni-borate layer.15 This treatment (five cycles of voltammetric scans from 0 to 1 

VRHE at 40 mV s-1) was suggested to involve the reversible redox between V5+ and V4+. 

Improvements to φsep following this treatment were attributed to an improved (lower 

gradient) distribution of V4+ near the surface of the film.15 The authors noted that others 

had observed a 5 nm “reduction shell” at the surface of BiVO4; however, those observations 

were on commercial powders that had not carried out PEC, and the scanning transmission 
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electron microscopy (STEM) imaging may have itself induced changes.64 Within this 

reduction shell, vanadium primarily exists in the 4+ state – compared to the 5+ state of bulk 

V – producing a n+-n homojunction that is deleterious to charge separation.15,64 It was also 

noted that onset potential was affected by vanadium redox changes. An anodic shift to 

onset potential was observed with starting potentials of 0.05 to 0.25 VRHE in current-

potential scans, indicating overly-reduced V4+ produces charge recombination sites.15 An 

alternative mechanism for film activation could involve the incorporation of hydrogen 

defects (Hint or Ho, for example), which would also reduce vanadium while introducing 

shallow donors; further measurements could clarify the changes to defect chemistry caused 

by such treatments. Calculation of the relative ABPE enhancement would require 

electrochemical data from the as-made sample.15 

Doping BiVO4 with N2 (N-BiVO4) was also shown to primarily improve photocurrent 

and φsep.
13 Charge injection efficiency was calculated to slightly increase as well. This 

treatment was reported to incorporate N in the lattice, accompanied by the generation of 

vo. Using Kröger-Vink notation, the proposed reaction was:13  

3OO
x + N2(g) → 2NO

′ + vO
•• + 1.5O2(g)   (1.4) 

where OO
x  denotes oxygen on an oxygen site, NO

′  denotes nitrogen on an oxygen site, and 

vO
•• denotes an oxygen vacancy. N-BiVO4 was achieved by annealing under N2 at 350 oC 

for 2 h. N-BiVO4 resulted in a reduced bandgap (~0.2 eV less) compared to untreated 

BiVO4 by increasing the VB maximum, as suggested by DFT calculations and IPCE 

measurements. Whereas vO are proposed by some to yield localized trap states in 

BiVO4,
13,33 the vO production in N-BiVO4 was also accompanied by a shift of the valence 

band towards the conduction band, enhancing activation of vO as donor states. The charge 
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mobility increased by 25%, corresponding to an improvement in φsep from 88 to 94% at 

1.0 VRHE. The concomitant reduction of bandgap notably also improved optical 

absorbance.13 The authors noted that the changes in the XPS spectrum were not suggestive 

of changes to the Bi nor V oxidation states, unlike several other postsynthetic treatments 

discussed thus far. Overall, N-BiVO4 produced one of the highest ABPEs reported to date 

(2.16%); in comparison, untreated BiVO4 samples demonstrated an ABPE of 1.63%. 

Additionally, the photocurrent for sulfite oxidation was stable for 50 h without decay;13 

and water oxidation photocurrents decayed after 30 h due to film degradation (perhaps 

caused by the use of a phosphate buffer).13,15,71 Further investigation into the defect 

chemistry specific to BiVO4 synthesized in this manner (i.e. electrodeposition and 

conversion) could be particularly insightful, given the exceptionally high performance 

(APBE) of this and similar reports (for example, references 15 and 25). 

Although the partial reduction of vanadium species is often correlated with improved 

PEC properties (e.g. φsep or φinj), the direct (electro)chemical reduction of BiVO4 is not as 

effective.68 For example, BiVO4 was reduced electrochemically for 3 min at ca. -0.3 VRHE 

followed by chemical reduction in 0.1 M NaBH4 for 3 min which enhanced the 

photocurrent from 0.5 to 1.4 mA cm-2 at 1.2 VRHE and was ascribed to an enhanced free-

carrier density from the production of vO and the associated reduced vanadium oxidation 

states, as evidenced by XPS.68 ABPE increased from 0.04 to 0.16% following this 

combined treatment. However, the benefits of this treatment were stable for only 40 min 

before the photocurrent began to decay significantly, returning to the initial (untreated) 

photocurrent after 75 min. The instability of this treatment might be due to the over-

reduction of BiVO4,
33 possibly resulting in the re-oxidation of species within the electrode. 
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Additionally, more mild reducing treatments (e.g. annealing in Ar to induce vo formation 

or less aggressive electrochemical treatment) have resulted in little to no change to BiVO4 

water oxidation performance.30,34 

Briefly we note that the conductivity of BiVO4 may also be enhanced thermally or by 

significantly increasing photon flux. The low minority carrier mobility in BiVO4 is caused 

by localization of the carriers as small polarons.72 A modest temperature increase from 10 

to 42 °C was shown to activate minority carrier hopping in BiVO4 and significant enhance 

the PEC activity from 1.8 to 4.0 mA cm-2 at 1.0 VRHE.42 Similarly, increasing the 

concentration of incident photons (from ~1018 photons cm-2 s-1 for AM 1.5 to ~1024-1028 

photons cm-2 s-1) can overcome trapping mechanisms for both charge carriers and 

significantly enhance mobility.20,22,23,34 

Summary 

Conventional methods of improving φsep in BiVO4-based photoanodes have primarily 

been confined to hetero-metal dopants and hole blocking layers.18,40,45 Postsynthetic 

techniques that have recently emerged can supplement or replace synthetic approaches by 

removing common and/or synthesis-specific bulk defects, and increasing the free carrier 

density.3,13,15,31,33,34 The development of these postsynthetic techniques continues to 

improve the understanding of BiVO4 defect chemistry and highlights the differences 

between various synthetic methods.3,33,34 

It is important to note that two of the techniques discussed produced stable 

improvements through mild (photo)electrochemical treatments.3,15 One may expect that 

these treatments only affect the near-surface, however the improvements to φsep suggest 

that bulk changes may be occurring e.g. intercalation of hydrogen. Further data are needed 

to better understand these changes. 
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Postsynthetic improvement of charge injection at the surface 

Postsynthetic treatments have been developed to modify the surface and near-surface 

regions of BiVO4-based electrodes. As described briefly in the introduction, the φinj suffers 

from slow water oxidation kinetics, which causes an accumulation of holes within the SCL, 

particularly at BiO8 polyhedra.73 This accumulation makes the back-recombination of 

holes and electrons kinetically viable.24 Recombination can also occur at surface defects at 

the BiVO4-electrolyte interface.30,41,74 Furthermore, the build-up of holes within the SCL 

and near the surface of BiVO4-based photoanodes was linked to photocorrosion,2,9 in 

particular when immersed in alkaline electrolytes.71,75 Clearly, the best strategies to 

improve φinj and prevent electrode degradation should involve either increasing the rate of 

water oxidation or decreasing the rate of near-surface recombination (Equation 1.3). 

Commonly, layers of additional materials as protective layers or catalysts – e.g. amorphous 

TiO2,
41,44,75 CoPi,17,19,76 NiOOH,13,25 etc.15,74,75,77–79 – are used to either block native 

defects, store holes to mitigate side reactions, or to catalyze the water oxidation reaction; 

however, simple postsynthetic modifications have also been used to mitigate surface 

defects.30,36,37,74 

Removal of surface recombination sites 

Surface recombination sites can be removed or blocked by simple postsynthetic 

treatments in both doped and pristine BiVO4. These treatments provide simple routes to 

decrease krec and improve φinj, as described in Equation 1.3. Simulations of BiVO4 surfaces 

suggest that hole localization and subsequent recombination at the electrode-electrolyte 

interface is caused by native crystal distortions;73 while experimental evidence supports a 

second recombination mechanism via segregated surface species.30 
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Ion segregation, or enrichment of a material constituent, at the surface of 

photoelectrodes has been known to form recombination centers.30,80 In the case of Mo-

doped BiVO4 (Mo:BiVO4), Mo6+ aggregates at the surface were dissolved by an 

electrochemical treatment of 30 cyclic voltammetry scans from -0.3 – 1.16 VRHE, causing 

the photocurrent at ~1.2 VRHE to approximately double when illuminated from the front of 

the photoelectrode, based on XPS and PEC characterization, corresponding to an increase 

in ABPE from 0.09 to 0.24%. Comparatively, non-doped BiVO4 electrodes showed no 

effect on photocurrent following the same electrochemical treatment, suggesting that the 

untreated Mo6+ locations are recombination sites at the semiconductor/electrolyte 

interface.30 Additionally, Mott-Schottky analysis suggested that bulk properties (e.g. 

carrier concentration) were not altered by the treatment; i.e. only φinj was affected.30 

Interestingly, a Bi-rich surface layer was observed following the electrochemical treatment, 

suggesting that V was also dissolved from the surface. The effect on photocurrent or 

stability caused by dissolving V from the surface or the enrichment of Bi at the surface was 

not reported,30 though it should be noted that Bi-enriched BiVO4 surfaces were previously 

shown to improve photocurrent stability.81 It should also be noted that while this treatment 

and the EC/chemical treatment discussed in the previous section68 both apply cathodic 

potentials to reduce electrode material, the potential discussed here was only applied for a 

brief time before sweeping to higher (oxidizing) voltages, compared to holding -0.3 VRHE 

for 3 min.30,68 For this treatment, cathodic potentials (versus V4+/V5+, Eapp < ~0.1 VRHE)15 

are only applied for ~6.5 s per scan before the sweep becomes anodic (~36.5 s for 0.1 < 

VRHE < 1.2). It would seem that any reduction of V or other species within these BiVO4 

films is reversed by the oxidation involved in each sweep, with the exception of surface 
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Mo6+ which is apparently dissolved irreversibly into solution. Additional differing results 

between this treatment and the previously discussed EC scanning treatment15 can be at least 

partially explained by the electrolytes used (sodium sulfate at pH 6.5 versus potassium 

borate at pH 9.4), as pH is known to strongly affect postsynthetic treatment.37 However, 

direct experimental comparison would be needed to confirm these hypotheses. This 

electrochemical treatment was found to be stable after storing treated electrodes in air or 

vacuum for 12 h.30 

While not strictly a postsynthetic treatment by our definition, etching of an NiOx 

catalytic layer on BiVO4 was proposed to block recombination sites ascribed to BiO8 

polyhedra at the electrode surface.73,74 Computational modelling suggested that lattice 

distortions within the first ~2 nm of BiVO4 surfaces create an environment favorable for 

hole trapping.73 Bi3+ surface sites were reportedly blocked by the selective etching of nickel 

borate surface layers in a potassium phosphate solution.74 The etching procedure exposed 

VO4 sites while the remaining, non-catalytic NiOx was primarily located on BiO8 sites. The 

resulting films exhibited a significant improvement to φinj, improving the stable 

photocurrent at 1.23 VRHE from 0.34 mA cm-2 to 1.09 mA cm-2,74 and improving ABPE to 

0.39% from 0.07 and 0.15% for untreated and NiOx catalyzed films, respectively. A small 

improvement of φsep for both catalytic and etched NiOx/BiVO4 samples over bare BiVO4 

can be observed in photocurrent data with hole scavenger (sulfite) present.74 This work 

emphasizes the crucial role of surface termination, particularly with multinary materials. 

Future work on this treatment could be directed towards improving the treatment route – 

e.g. by directing the passivating material to the recombination sites initially and removing 



www.manaraa.com

25 

the need to etch – and investigating the surface chemistry of BiVO4 (for example, the role 

of different exposed metal sites and the passivation mechanism of NiOx sites). 

These postsynthetic techniques target both the electrode-electrolyte interface and 

improve φinj by removing or blocking surface recombination sites, and represent facile 

approaches to enhance the performance of both doped and pristine BiVO4 photoanodes.30,74 

These diverse results highlight that there is not a specific ideal surface termination since 

both Bi and V surface-rich terminations were observed with improved charge injection, 

depending on the particular report. 

Near-surface doping and surface state alteration 

In the near-surface regime (i.e. 2-10 nm),73 partial reduction of V through 

photochemical treatment has been associated with improved φsep and φinj.
35–37 

Photochemical treatments have been demonstrated with both ultra-violet (UV) and visible 

light and the resulting effects can be achieved either in or out of electrolyte, depending on 

the report.35–37 Soaking BiVO4 in AgNO3 can also improve φinj significantly.81 

Relatively early in the PEC research on BiVO4, it was noticed that the photocurrent in 

pristine BiVO4 decayed as much as 50% within 30 min, yet the photocurrent could be 

partially restored by cyclic voltammetry or storing the electrodes in the dark for 24 h.81 

Based on the existing knowledge of photoelectrode surface modifications, this work 

exposed BiVO4 to a number of metal salts (0.01 M, 12 h) to adsorb metal ions into BiVO4. 

Of the different salts tested, AgNO3 solutions showed the most improvement in 

photocurrent. Following AgNO3 treatment, φinj was improved to near-unity and φsep was 

slightly improved at high potentials (1.15-1.55 VRHE); APBE was improved from 0.06 to 
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0.21%.4 BiVO4 treated with AgNO3 demonstrated a stable photocurrent (1 h) plateauing at 

nearly twice the saturation photocurrent of untreated BiVO4. Following an XPS analysis 

on the effect of 1 h of photoreaction (e.g. PEC water splitting) on treated and untreated 

BiVO4, it was found that V dissolved from the surface of both treated and untreated 

samples; however, the surface of treated BiVO4 was capped by a Bi-rich layer. The surface 

of AgNO3 treated BiVO4 was etched following photoreaction; beneath the surface, Bi and 

V were found to be stoichiometrically matched even with 1.8 at% Ag+ present, and Bi was 

found to be both in the normal Bi3+ and reduced Bi0 oxidation states; here it should be noted 

that by incorporating metal species to BiVO4, this treatment is not strictly a postsynthetic 

treatment. The researchers attributed the improved photocurrent and stability to both the 

protective Bi-rich surface layer and the Ag+ ion exchange layer formed at the surface of 

AgNO3 treated BiVO4.
81 Additionally, it was hypothesized that the addition of Ag+ to the 

near-surface region of BiVO4 would raise the VB maximum within this spatial region;2,82 

thus narrowing the bandgap and improving charge separation as well as absorption. Further 

evidence would be needed to support this hypothesis. 

For W-doped BiVO4 (W:BiVO4), curing electrodes in air with UV light (~10 mW cm-

2, 20 h) significantly enhanced both φsep and φinj (Figure 1.5a).35 The improvement of φsep 

was demonstrated by comparing photocurrents before and after treatment in the presence 

of a hole scavenger (H2O2). Evidence of φinj improvement was shown by the change in 

photovoltage from 0.17 to 0.41 V,35,83 as well as the comparison of water oxidation 

photocurrents in relation to the photocurrents in a hole scavenger. UV-cured W:BiVO4 

films showed an improved ABPE for water oxidation (0.20%) over untreated samples 

                                                 
4 Photocurrent was measured using an unfiltered Xe lamp with ca. 2.6 x AM 1.5G intensity. Therefore, 260 

mW cm-2 was assumed as the illumination power. 
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(0.07%). The improvements of φinj were attributed to a change in the ratio of dangling to 

bridging (oxy)hydroxyl group surface groups at the electrolyte-electrode interface, where 

the amount of bridging O was increased following UV-curing. Alterations to film 

crystallinity and texture were also observed, and would be expected to affect φsep.
35 Further 

analysis on the effects of this treatment (e.g. defect chemistry, carrier kinetics) in relation 

to other photo(electro)chemical treatments could offer important insights into the 

differences between pristine and doped BiVO4. 
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A separate light-based treatment was demonstrated to address the limitations of BiVO4, 

denoted as ‘photocharging’,36,37 which uses long-time exposure of the BiVO4 photoanodes 

to AM 1.5G illumination under open circuit conditions in a cell filled with electrolyte. 

Photocharging leads to greatly enhanced photocurrent, a strong cathodic shift of the 

photocurrent onset, and improved J-V fill factor (Figure 1.5b). The photocharging-driven 

activation of BiVO4 photoanodes is facilitated especially under alkaline conditions, with 

slightly alkaline electrolyte (pH 10) showing the greatest performance enhancements and 

slightly acidic media (pH 4) showing no effect following photocharging;37 photocharged 

samples in pH 10 buffer were found to have an ABPE of 1.67%, versus an ABPE of 0.16% 

for untreated films. It is worth noting here that not all basic media are appropriate for 

BiVO4-based electrodes; phosphate buffers especially are known to etch BiVO4 to the 

detriment of film performance and stability.15,71 The combination of requirements – 

principally alkaline electrolyte and visible light illumination – led to the conclusion that 

photogenerated holes (h•) and hydroxide ions cause two main effects; i) hydrogenation of 

the near-surface region, proposed as the formation of interstitial positively charged defects 

(Hint
•), resulting in V4+ and oxygen vacancies (vO

••), and ii) saturation of the electrode 

surface with hydroxyl groups, which act as intermediates in the OER.37 The proposed 

defect chemistry reaction, described using Kröger-Vink notation and shown in Equation 

Figure 1.5 Photocharging versus UV-treated BiVO4. a) left: Photocurrent densities of 

BiVO4 photoanodes, before and after UV curing, with (solid) and without 0.1 m H2O2 

(dashed), and right: J-V scans of BiVO4 under back-side illumination. Arrows denote 

catalytic limitations for untreated (black) and photocharged (red) material. b) XPS of 

BiVO4 with 0 h (black) and 20 h (red) UV curing (left); and of BiVO4 photoanodes before 

and after photocharging in 0.1 M PBA buffer, pH 10 (right). Except where noted, samples 

measured in 0.1 M KPi and  AM 1.5G illumination. Left-hand figures reproduced with 

permission from Reference 35 (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim). Figure a(right) and b(right) reproduced with permission from References 36 

and 37, respectively - Published by The Royal Society of Chemistry. 
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These surface and near-surface alterations result in a record high photocurrent for undoped 

and uncatalyzed BiVO4 of 4.3 mA cm-2 at 1.23 VRHE, an onset potential of 0.25 VRHE 

corresponding to a doubling of the photovoltage, improved φinj and φsep, and near-unity 

internal quantum efficiency.36,37 Electrochemical impedance spectroscopy (EIS) 

characterization suggests that photocharging leads to the formation of a surface capacitive 

layer, which has the ability to accumulate holes, and hence reduces the surface 

recombination. The formation of this capacitive layer involves the increase of hydroxyl 

groups at the surface and the partial reduction of vanadium 5+ to 4+, as supported by X-

ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) 

measurements,37 and more recently by intensity modulated photocurrent spectroscopy 

(IMPS).38 IMPS results further elucidated that φinj improvements (caused by the 

aforementioned surface state changes) increased charge transfer while decreasing 

recombination (kWO and krec in Equation 1.3, respectively).38 

Contrary to the UV-curing study, which can enhance performance even when 

illuminated in air, photocharging could only be performed in an aqueous solution. While 

the surface states were observed to change following both treatments, the trends were 

opposite; i.e. increasing amount of dangling –OH surface sites in case of photocharging in 

an electrolyte and passivation of –OH in case of UV-curing in air (Figure 1.5b).35,37 These 

differences between UV-cured W:BiVO4 and photocharged BiVO4 might be caused by 

either the differences in deposition method (sol-gel spin coating vs spray pyrolysis, 

respectively) which can cause different intrinsic surface or bulk defects,36 or by the addition 

of W to BiVO4 in the UV-curing case which is known to form extrinsic trap states.20,34 As 

noted previously, doping BiVO4 can cause significant alterations to the surface of BiVO4;
30 
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furthermore, doping BiVO4 with W is known to form additional trap states (versus pristine 

BiVO4), adversely affecting charge carrier mobilities and lifetimes.20 More work is needed 

to confirm either of these hypotheses. Notably, the mechanism proposed for photocharging 

is very similar to that for H2-annealed BiVO4 and the role of hydrogen in BiVO4, as 

discussed in the previous section.33 Both treatments – H2 annealing and photocharging – 

are proposed to introduce hydrogen defects (HO, Hint) and vO, as well as altering the surface 

states at the semiconductor-electrolyte interface. Both treatments have also been shown to 

improve φsep and increase the concentration of surface dangling –OH groups,32,36 which 

were shown to improve φinj in photocharged samples.37 In addition to the treatment 

conditions, the most significant difference between the electrodes is the localization of 

vanadium reduction to the near-surface (top 5-10 nm, based on XPS, XAS, and XANES 

results) of photocharged BiVO4 compared to no reported localization in H2-annealed 

BiVO4. Similarities also exist between the photocharging treatment and some of the 

(photo)electrochemical treatments discussed in the previous section.3,15,36,37 All of these 

treatments take place, optimally, in alkaline media and are accompanied by changes in the 

V oxidation state for an overall enhancement of photocurrent and improved onset potential. 

Indeed, the photocharging effect works best in alkaline media and not at all in acidic 

media.37 Additionally, the initial report on photocharged BiVO4 indicated that the treatment 

was reversible (i.e. unstable) when stored in the dark overnight in buffer;36 however, EC-

treated BiVO4 was reported as stable over extended measurements (10 h PEC, 10 days in 

borate electrolyte), perhaps owing to the deposition of a catalytic layer following the 

electrochemical treatment.15 
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These similarities point towards a relationship between three effective postsynthetic 

treatments for improving the PEC efficiency of BiVO4, where H2 annealing, 

photocharging, and electrochemical treatments achieve similar results based on possibly 

related underlying mechanisms.3,15,33,34,37 Further data are needed to develop a deeper 

understanding and to find the most effective treatments for further performance gains. 

Bringing new measurement techniques to bare on BiVO4 will certainly help illuminate 

changes.84–86 

Summary 

Postsynthetic treatments offer powerful ways of removing a variety of surface 

recombination sites and improving (near)-surface kinetic properties of BiVO4-based 

photoanodes. Importantly, the type of defect present (and therefore the synthetic method 

utilized) has a significant impact on the effectiveness of a given technique. For example, 

two similar treatments – UV curing and photocharging – are not interchangeable and seem 

to have opposite effects on different BiVO4-based electrodes.37 Likewise, two seemingly 

disparate treatments – PEC activation (oxidation) and electrochemical cycling – both 

improve electrodes similarly, presumably because the initial-state after synthesis has 

different native defects.3,30 Therefore, as research on BiVO4 electrodes continues, it is 

important to carefully characterize the types and location of defects present within BiVO4 

before and after treatments. This is especially important when comparing different 

synthetic routes, but is equally relevant for the same synthesis where small changes to 

instrumentation can produce significantly different materials.34 

Theoretical limits 

Enhanced theoretical models87 based on the detailed balance concept88 predict 

fundamental prospects of solar water splitting devices and enable precise guidance for their 
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development.89 These models include fundamentally inevitable losses such as radiative 

recombination, thermalization, and transmission. However, oxide materials with highly 

non-ideal semiconductor properties, such as BiVO4, still represent significant challenges 

for both theoretical prediction and experimental implementation. Figure 1.6a compares the 

idealized optoelectronic performance limit for BiVO4 (black line, in a hypothetical PV 

configuration) with present day record current-voltage characteristics (red/blue lines, PEC 

configuration, see also Figure 1.2). The theoretical calculation (black line, Figure 1.6a) 

assumes idealized material by neglect of nonradiative recombination, of lattice 

imperfections, and of system losses (including catalysis, band offsets, resistances, etc.) that 

largely diminish the performance of experimental BiVO4 PEC devices. Fundamentally, its 

2.4 eV band gap (Ebg) enables BiVO4 to provide up to 2.1 V open circuit voltage (Voc) and 

14.5% PV efficiency at a load of about 1.95 V (maximum power point, mpp). In the light 

of more than 700 mV sacrificial overvoltage (in excess of the thermodynamic water 

splitting potential of 1.23 V) even bias-free PEC operation of a single-junction absorber 

may appear conceivable. However, a single-junction approach has not been achieved in 

practice due to major material deficiencies (recombination and poor band alignment) 

demanding a much higher overvoltage budget. 

Experimental PEC performance of BiVO4 (Figures. 1.2 & 1.6a) lags far behind that 

ideal, but at least positive net energy contributions (up to ~2% APBE, see above)13,15 have 

been realized. Present and future development deals with three major bottlenecks 

restricting solar-to-hydrogen (STH) energy conversion with BiVO4: (i) non-radiative 

recombination, (ii) unfavorable band alignment, and (iii) an excessively large band gap 

energy. Engineering solutions such as host-guest architecture14,45,55 decouple the mismatch 
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of diffusion and absorption lengths enabling impressive photocurrents (Figure 1.6a, line 

III).5 Gradient doping improves charge carrier extraction,27 and thus effectively further 

suppresses the impact of non-radiative recombination events towards a more rectangular 

IV characteristic (Figure 1.6a, line IV). Both concepts also promise minor improvements 

of the photocurrent onset potential (Figure 1.6a, line III), but are limited by the intrinsically 

non-ideal band alignment of BiVO4 to the water oxidation/reduction potentials. 

A priori, the transfer between absolute PV (upper axis) and relative PEC (lower axis) 

potential metrics (Figure 1.6a, line I) remains unclear. Despite its high band gap and 

theoretical voltage prospects, BiVO4 is considered incapable of driving unbiased water 

splitting as its band edges do not straddle both water splitting half-reaction potentials.90 

However, appropriate engineering solutions such as surface modification with dipoles91 or 

a buried p-n junction89 may lessen or even resolve the misalignment. Tandem operation 

represents a more practical solution already demonstrated today.27,92,93 Utilization of 

inevitable transmission losses (photons <2.4 eV) by a subsequently absorbing bottom PV 

structure may provide plenty additional (built-in bias) voltage. Figure 1.6b maps detailed 

balance tandem STH efficiency limits over both top and bottom absorber band gaps. 

Optimum structures may tolerate up to 2.3 V of overvoltage loss before severely restricting 

the performance prospects. The popular concept of combining BiVO4 with multiple bottom 

junctions accommodates even higher losses.27,92,93 Achieved performance gains indirectly 

demonstrate insufficient material quality of concurrent BiVO4, where its I-V characteristics 

virtually never saturate to a light-limited photocurrent regime with low applied bias. 

                                                 
5 We cannot exclude a certain level of overestimation in literature data,92 but the 

significance of the achievements remains obvious.  
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Engineering concepts promise to combine more ideal performance with better photocurrent 

onset. 

 

 
 

 
 

Conclusions 

Bismuth vanadate is a well-studied and interesting material for use in solar-assisted 

water splitting. Recently, a variety of postsynthetic modifications have emerged to improve 

the ABPE performance of BiVO4. Postsynthetic treatments have provided insights into 

BiVO4 defect chemistry at the surface and within the bulk of the material, yielding 

significant enhancements to charge injection and charge separation, respectively. 

Importantly, it has become apparent that probing the oxidation states by XPS alone cannot 

distinguish between the multiple posited changes to defect chemistries. For example 

thermal hydrogenation,31,33,34 proton intercalation,36,37 production of oxygen 

vacancies,13,31,36,37 and electrochemical reduction15,68 all are expected to yield reduced 

Figure 1.6 (a) Comparison of I-V characteristics of experimental BiVO4 PEC devices 

(blue/red, bottom axis) relative to the theoretical detailed balance limit for BiVO4 

photovoltaics (black, top axis); and (b) detailed balance contour plots of the fundamental 

solar-to-hydrogen conversion efficiency limit for dual-junction water-splitting devices 

over the bandgap energies of top and bottom absorber material for thin (1 mm) illumination 

length through the electrolyte and high (2300 mV) overvoltage loss. 
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vanadium states. XPS measurements of vanadium oxidation states alone are not sufficient 

to distinguish between these various defect mechanisms. New insights will be drawn from 

future studies that attempt to parse these multiple causal pathways in the presently reported 

observations. Techniques to probe local electronic environments, e.g. solid-state NMR (1H, 

51V, and 209Bi),33,94–96 Raman and IR spectroscopy,94,97 electron energy loss spectroscopy 

(EELS),63–65 STEM,64,98 and X-ray absorption near edge structure (XANES)66 – could be 

used in conjunction with computational methodologies to identify changes to specific 

defect chemistries. Here, inelastic X-ray techniques have yielded recent insights into 

changes at the BiVO4/electrolyte interface84,86 and to electronic structure with changing 

defect chemistry.11,85,99,100 Once the defects are identified with specificity, then techniques 

that probe charge carrier dynamics (such as transient diffuse reflectance and time-resolved 

conductivity)23,34 or trap states (such as photoluminescence)33 could provide valuable 

insights into the role of those defects sites (e.g. catalytic site, trap site, and/or donor). 

Beyond immediate performance, postsynthetic treatments may also elucidate possible 

electrode changes under extended service and provide new strategies to enable extended 

device performance, furthering the development of commercial PEC water splitting 

devices. 
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CHAPTER 2: 

SURFACE FUNCTIONALIZED ATOMIC LAYER DEPOSITION OF BISMUTH VANADATE 

FOR SINGLE-PHASE SCHEELITE
6 

  

                                                 
6 Reproduced from Lamm, B.; Sarkar, A.; Stefik, M. J. Mater. Chem. A. 2017, 5, 6060-6069 with 

permission from The Royal Society of Chemistry. 
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Abstract 

Monoclinic bismuth vanadate is one of the most promising oxide photoanodes for solar 

–assisted water splitting. To date, the atomic layer deposition of bismuth vanadates has 

relied on the catalytic codeposition of BiPh3 with VTIP to produce vanadium-rich 

compounds that undergo spinodal decomposition to multiphase mixtures upon 

crystallization. A surface functionalization (SF) step of ROH/VTIP/H2O was developed to 

inhibit V2O5 deposition for adjustable Bi:V stoichiometry. Ethanol, 2-propanol, and 

methanol were each found to inhibit V2O5 deposition, in order of increasing effect. 

Applying this SF step with ternary Bi-V-O depositions (ROH/VTIP/H2O/BiPh3/H2O) 

enabled composition tuning. The use of methanol enabled 45.9:54.1 Bi:V atomic ratio as-

deposited, and was crystallizable to phase-pure scheelite, depending on the thickness. The 

resulting films were applied towards photo-assisted water splitting with a hole-scavenging 

sulfite where films up to 60 nm thick were free from apparent charge transport limitations. 

The optoelectronic properties were markedly improved by a novel photoelectrochemical 

activation step. 

Introduction 

Solar photoelectrochemistry (PEC) is an attractive source for sustainable fuels such as 

hydrogen.1 Bismuth vanadate was first demonstrated as a photocatalyst for water oxidation 

in 1998, with the monoclinic-scheelite phase (m-BiVO4) showing the highest efficiency.2,3 

The m-BiVO4 phase has a band gap of 2.4 eV,3,4 a conduction band edge near 0 V vs the 

reversible hydrogen electrode (RHE)5 and a valence band edge near 2.4 V vs RHE. Thus 

electrons in the conduction band have appropriate potential to support the hydrogen 

evolution reaction (0 V vs RHE) at the counter electrode with a small applied bias and 

holes in the valence band have ample potential to support the oxygen evolution reaction 
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(1.23 V vs RHE) at the semiconductor-electrolyte interface. Electrons and holes generated 

by photoabsorption are thus able to support photoassisted water splitting with a low onset 

potential (ca. 0.25 V vs RHE) for the photoanode. The performance of BiVO4 photoanodes 

has progressed quickly with many recent advances.4–9 

For solar-fuel applications, bismuth vanadate requires an optical thickness of ~700 nm 

for efficient light harvesting near the band edge (discussed in SI) that is much larger than 

the sum of the depletion width and the limiting carrier diffusion length.5,10 Thus, many 

recent devices with record photocurrents used BiVO4 thin films supported upon 

transparent, conductive scaffolds. Such “host-guest” or extremely thin absorber approaches 

have been largely successful at decoupling optical absorption from carrier transport.11–13 

Thus far, all BiVO4 host-guest reports have utilized non-uniform depositions or used 

cathodic depositions that limited the use of hole blocking layers at the host-guest 

interface.7,8,14,15 In contrast, atomic layer deposition (ALD) enables controlled growth onto 

arbitrary 3D porous scaffolds independent of substrate electronic properties, bringing 

distinct advantages to the development of efficient host-guest nanostructures. Such 

structures have been developed for optoelectronics including α-Fe2O3,
16,17,26–35,18–25 

Cu2O,36–39 and other photoelectrodes.40–42 

Thus far, all reports of ALD bismuth vanadates had >65 at%V, leading to spinodal 

decomposition into BiVO4 with an additional V2O5 phase.43 With conventional ALD, the 

amount of material deposited per cycle is fixed due to a self-limiting reaction of each 

precursor at surface saturation. The deposition rate is a constant for each precursor/oxidant 

combination under steady state.44 While this is a significant benefit for conformal thin-film 

growth, the quantized nature of deposition limits stoichiometry tuning. Surface-
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functionalized atomic layer deposition (SF-ALD) enables further stoichiometry tuning by 

modifying the amount of material deposited per cycle. SF-ALD can thus reduce the amount 

of material deposited by partially blocking deposition sites. For example, alcohols can 

undergo a condensation reaction with surface hydroxyl groups to inhibit the deposition of 

the subsequent metal precursor.44–46 The subsequent oxidant pulse removes the remaining 

ligands from the metal as well as the SF-species. Since the SF step is self-limiting, the 

overall deposition remains conformal and self-limiting, but with more granular control over 

the amount deposited. Although SF-ALD was developed to modify the extent of doping,44–

46 it is also conceptually suitable for tuning the stoichiometry of multi-metal compounds. 

Here, SF-ALD with alkyl alcohols (ROH) enables the most Bi-rich depositions of 

bismuth vanadate to date, including nearly stoichiometric BiVO4. Crystallization of the 

amorphous films led to the phase-pure photoactive form of m-BiVO4, depending on film 

thickness. In addition, a PEC activation treatment was found to significantly improve PEC 

efficiency. 

Experimental 

Materials 

Triphenyl bismuth (BiPh3, 99%) and vanadium(V) triisopropoxy oxide (VTIP, 98+%) 

were used as received from STREM. Deionized (DI) water was prepared using a Siemens 

Labostar model; where specified, deionized ultra-filtered (DIUF) water (Fisher) was used 

in place of DI water. Methanol (ACS Grade, Fisher), 2-propanol (70% lab grade, BDH), 

ethanol (95%, Fisher), H3BO3 (ACS Grade, VWR Life Science), HNO3 (Fisher, Optima 

grade), Na2SO3 (ACS Grade, Macron), and KOH (ACS Grade, Fisher) were used as-

received. TEC-15 fluorine-doped tin oxide coated glass (FTO) was purchased from 

Hartford Glass. The FTO substrates were cleaned extensively before use with 2-propanol 
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and DI water before sonication in soapy water (Decon Contrex, 2 wt%), followed by 

additional rinses with water and 2-propanol, followed by sonication in 2-propanol. Polished 

n-doped silicon wafers with (100) orientation were purchased from University Wafers, 

USA. The cleaned FTO substrates and silicon wafers were calcined using a Barnstead 

Thermolyne muffle furnace at 450 oC for 1 hr immediately prior to use. High-temperature 

grade Kapton tape was purchased from McMaster-Carr, USA. Ultra-high purity nitrogen 

(99.999%) and oxygen (99.5%) were used as received from Praxair. 

Atomic Layer Deposition of Bismuth Vanadate Films 

Samples were masked using Kapton tape to define the deposition region. Samples for 

composition analysis were masked on the bottom to avoid diffusion gradients along the 

back of the films. Samples on FTO were masked on the back and partially on the front to 

provide clean electrical contacts for PEC measurements. The BiPh3 and VTIP were each 

loaded into separate stainless-steel cylinders in an argon glovebox. Water and the alcohol 

in use (ROH; ethanol, 2-propanol, or methanol) were loaded into separate stainless steel 

cylinders under normal atmosphere. The cylinders were sealed and connected to and 

Arradiance Gemstar-8 reactor. Nitrogen was used as both the carrier gas and the purging 

gas. Precursor dosing was controlled using Swagelok ALD valves. The BiPh3 and VTIP 

cylinders were heated to 130 and 45 oC, respectively. The reactor was set to 130 oC, both 

metal precursors had a pulse time of 2 s, ROH had a pulse time of 25 ms, and water had a 

pulse time of 25 ms. A vapor-boosting 20 ms pulse of nitrogen was added to the BiPh3 

cylinder just prior to each pulse. The reactor chamber was isolated before each pulse to 

contain the precursors for 1 s after exposure (“exposure mode”). The excess precursors 

were purged after each exposure using 200 sccm nitrogen for 10 s. The deposition was 

organized into a macrocycle of (ROH/VTIP/water/BiPh3/water)a where ROH was used to 



www.manaraa.com

55 

control composition and ‘a’ controlled total thickness deposited. A comprehensive ALD 

protocol is provided in the Supporting Information (Table B.2). 

SF-ALD sample PEC performance was compared to the performance of previously 

reported samples synthesized via conventional ALD (Figure B.4).43 The reported ALD 

procedure is identical to the SF-ALD procedure described above, sans alcohol surface 

functionalization. Conventional ALD samples (ALD) of 55.6 nm thickness were calcined 

at 450 oC for 1 h and etched in 1 M NaOH to remove excess V2O5. SF-ALD samples 

(60nm-8k, described in the text) were measured following the standard activation 

treatment, vide infra. 

In Situ Deposition Monitoring 

Quartz crystal microbalances (QCMs) assembled in an array were used to monitor ALD 

depositions in situ across the reaction chamber. It is important to note that while data were 

collected in real time, certain variables – such as precursor pulsing, varying flow rates, and 

proportional-integral-derivative (PID) controller cycles – caused thermal transients that 

obfuscated the very small signals for mass change during individual pulses. Accordingly, 

average deposition rates were determined using a least squares fit analysis for linear 

deposition rates. A total of 500-2000 (SF)-ALD cycles were performed for each experiment 

to provide accurate measurements of growth per cycle (GPC). The QCM crystals were 

installed in a low-profile plate inside the deposition chamber and electrical connections 

were fed through an auxiliary port. The QCM array (custom design, Colnatec) utilized a 

special sealing interface to eliminate the need for inert gas purging on the back side of the 

crystals. Radiation-compensated (RC) cut quartz crystals were used with aluminum 

contacts (Colnatec). The native oxide on the Al top contact of the crystals led to the facile 
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establishment of linear QCM response, as shown elsewhere.43 QCM deposition data were 

calibrated by SEM observations of film thickness.  

Composition Analysis 

Samples were digested with 4 M nitric acid (~5 mL) in Teflon vessels at 180 oC for 5 

hr. The resulting solution was diluted to 50 mL using DI water. A Finnigan ELEMENT 

XR double-focusing magnetic sector field-inductively coupled plasma-mass spectrometer 

(SF-ICP-MS) was used for analyzing V (51, LR), Bi (209, LR), and internal standard Rh 

(103 LR). A Micromist U-series nebulizer (GE, Australia) was operated at 0.2 mL min-1 

with a quartz torch and an injector (Thermo Fisher Scientific, USA) for sample 

introduction. The gas flow was set to 1.08 mL min-1. The forwarding power was 1250 W. 

Composition analysis was based on a five-point calibration curve for both V and Bi. The 

calibration range was from 10 to 600 ppb. The R2 values for the initial calibration curves 

were greater than 0.999. 

Film Treatments 

The ALD films were heated to induce crystallization. Samples were heated at 5 oC/min 

to 200 oC, followed by 10 oC/min to 450 oC, held constant at 450 oC for 1 hr, and allowed 

to cool in the furnace. 

Diffraction 

X-ray diffraction experiments were conducted using a SAXSLab Ganesha at the South 

Carolina SAXS Collaborative. A Xenocs GeniX 3D microfocus source was used with a Cu 

target to generate a monochromatic beam with a 0.154 nm wavelength. The instrument was 

calibrated using silicon powder (NIST 640e). Scattering data were processed from the 

scattering vector q = 4πλ-1sinθ where λ is the X-ray wavelength and 2θ is the total scattering 

angle. A Pilatus 300 K detector (Dectris) was used to collect the two-dimensional (2D) 

scattering patterns. Samples were measured at an incident angle of 8o relative to the film 
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plane. SAXSGUI software was used to radially integrate the 2D patterns to reduced 1D 

profiles. The conversion of the resulting intensity versus q data was converted to 2θ using 

the above formula. 

Photoelectrochemical and Electrochemical Measurements 

Linear sweep voltammograms were measured using a three-electrode potentiostat 

(BioLogic SP-150) with a Ag/AgCl/KCl (saturated) reference electrode (Pine Instruments) 

and a platinum wire counter electrode (Pine Instruments). Samples on FTO substrates were 

clamped with a titanium sheet to provide an ohmic contact. The electrodes were placed into 

a cell made of polyether ether ketone (PEEK) with a fused-silica window. Simulated 

sunlight was generated using a 75 W xenon lamp (OBB, Horiba) that passed through a 

water infrared filter (OBB, Horiba), a KG-3 filter (317-710 nm pass, Edmund Optics), and 

a BG-40 filter with an antireflective coating (335-610 nm pass, Thorlabs). This 

combination of filters removed much of the UV light where the Xe lamp has the most 

spectral mismatch from the AM 1.5 spectrum. The transmitted light was collimated using 

a fused-silica lens (Thorlabs) and passed through an engineered diffuser with a top-hot 

profile to provide a homogeneous intensity profile with a slight 10o divergence. The 

transmitted light was corrected for brightness in the 335-610 nm spectral range to generate 

a photocurrent identical to AM 1.5 sunlight. The illumination intensity was measured using 

a calibrated UV-enhanced silicon photodiode (Thorlabs) equipped with a neutral reflective 

filter (optical density 1.0, Thorlabs) to maintain a linear and calibrated photodiode 

response. This calibration practice provides accurate solar simulation in terms of both 

spectral distribution and brightness with a minimal correction factor.47 

PEC measurements were performed in 1 M potassium borate with or without 0.2 M 

sodium sulfite (Na2SO3) as hole scavenger at pH 9.35. It has been well established that 
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potassium phosphate buffers dissolve BiVO4 at working pH values;9,48,49 however, BiVO4 

photoanodes are stable in alkaline borate buffers. The potassium borate solution was 

prepared by adjusting the pH of 1 M H3BO3 in DIUF water to 9.35±0.02 with KOH as 

confirmed by a calibrated Thermo Scientific OrionStar A211 pH meter. The sulfite acted 

as a hole scavenger to provide quantitative charge injection from the semiconductor to the 

electrolyte for the measurement of film performance without catalysts. The samples were 

scanned from -0.600 to 0.650 V vs Ag/AgCl reference electrode at 10 mV s-1. Multiple 

scans were completed at each condition to confirm reproducibility and the second scan 

results were reported. Film stability was measured by chronoamperometry (CA) at 0.6 V 

vs RHE under simulated AM 1.5 illumination to measure the photocurrent stability of SF 

ALD 30nm-4k film over 17 hrs. The film was freshly calcined prior to the stability 

measurement. 

Quantum efficiencies were calculated based on CA measurements made with 

monochromatic light while using the same potassium borate buffer described above. 

Illumination was generated using a 150 W xenon lamp (OBB, Horiba) that passed through 

an 180o monochromator with a 5 mm slit width and 1200 grates mm-1 diffraction grating 

(OBB, Horiba). Transmitted light was collimated using a fused-silica lens (Thorlabs) and 

passed through an engineered diffusor with a top-hat profile to provide a homogenous 

intensity profile with a slight 10o divergence. CA measurements were recorded at -0.153 

V vs Ag/AgCl reference unless otherwise noted. All electrochemical potentials E were 

reported versus the reversible hydrogen electrode (RHE) using the formula E(vs RHE) = 

E(vs Ag/AgCl)+Eref(Ag/AgCl)+0.059 V * pH where Eref = 0.197 V in this case. 
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For both CA and LSV measurements, representative samples of a given set were plotted 

with the mean (indicated as ‘x’) and bars for the error of the mean. 

Prior to LSV and CA measurements, films were exposed to an external bias of 0.6 V vs 

RHE (-0.153 V vs Ag/AgCl) under AM 1.5 illumination for 1 hour. To compare different 

aspects of film activation (Figure 2.8), freshly calcined samples were measured for UV-vis 

absorptance and CA data (Control). Following this, these same samples were either 

allowed to soak in potassium borate solution for 1 hr (Soak), applied 0.6 V vs RHE for 1 

hr in dark (EC-Only), exposed to AM 1.5 solar simulator for 1 hr (Photo-Only), or treated 

with the standard PEC activation treatment (PEC) before measuring LSV and CA once 

more (except in the case of Soak, where only CA was measured). Additionally, another set 

of freshly calcined samples were soaked in electrolyte for 1 hr followed by LSV and CA 

(LSV-Only, Figure B.4) to observe the effects of LSV measurement, which is a 

combination of phot- and electrochemical treatments. It is important to note that for this 

series of measurements, samples all came from the same 4,000-cycle SF-ALD film; 

additionally, for each test condition samples were selected from a variety of locations 

within the film to avoid local thickness or crystal quality variance within the film. 

Optoelectronic Properties 

The optical response of thin films was measured using a Shimadzu UV-2450. A 

sandwich configuration of FTO-water-fused quartz was used to minimize light scattering 

differences between the blank measurement of bare FTO and samples coated onto FTO. 

Identical measurements on FTO were used to establish the baseline for the measurement 

of the optical properties of the deposited films alone. 
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X-ray Photoelectron Spectroscopy 

A Kratos Axis UltraDLD instrument equipped with a monochromated copper K-α X-

ray source (wavelength of 0.154056 nm-1, operating at 10 kV and 15 mA). A hybrid lens 

mode was employed during analysis, with an analysis area of approximately 700 μm x 

300 μm. The XPS spectra for all samples were taken at a photoemission angle of 0°, 

relative to the surface normal. A Kratos charge neutralizer system was used on all samples 

with a filament current of between 1.8 - 2.1 A and a charge balance of 3.6 V. 

Morphology 

A Zeiss Ultra Plus scanning electron microscope (SEM) was operated at 5 kV using an 

in-lens secondary electron detector to observe the film surface and cross-sectional 

acquisition. ALD growth rates were calculated based upon cross-sectional SEM imaging 

of films in the 50-100 nm thickness range. 

Results and Discussion 

Effect of Alcohol on Surface Functionalization 

The ALD growth of bismuth vanadates (BVO) has not yet enabled phase pure scheelite 

due to limited stoichiometry control. We briefly note that bismuth vanadates are a class of 

compounds with various Bi:V ratios. The prior report of ALD BVO utilized triphenyl 

bismuth (BiPh3), vanadium triisopropoxy oxide (VTIP), and water. To the best of our 

knowledge, this remains the only prior reported ALD of BVO. Here, the film stoichiometry 

was >65 at%V-rich and required a post-treatment etch of V2O5 to achieve phase-pure m-

BiVO4 films.43 Increasing the pulse ratio to favor Bi had limited benefits since the Bi-

deposition is catalytically dependent on V-OH species.43 SF-ALD provides a novel and 

time-efficient alternative to improve the Bi:V stoichiometry by reducing the amount of 

VTIP deposited in each cycle. Starting from a prior ALD protocol for V2O5,
43,50 a pulse of 

different alcohols were used to inhibit the subsequent VTIP deposition with a [ROH-VTIP-
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W]x deposition cycle. The specific alcohols investigated included ethanol, 2-propanol, and 

methanol (EtOH, iPrOH, and MeOH, respectively). Starting from a V2O5 growth-per cycle 

(GPC) of 0.22 Å/cycle, the alcohols were found to have increasing inhibition effect in order 

of EtOH, iPrOH, and MeOH (Figure 2.1 and Table 2.1). The alcohol pulse length was 

found to saturate growth inhibition well within 25 ms (Figure B.1). MeOH had the largest 

effect on VTIP deposition with the lowest GPC. This deviates from prior reported SF-ALD 

trends with these alcohols applied towards other materials.44,45 Many aspects determine the 

efficacy of a particular SF-species, including the density and type of remaining active sites, 

side reactions between precursor and inhibitor, and inhibitor displacement by precursor.45  

 
 

 
 

  

Figure 2.1 (SF)-ALD growth rates of V2O5 using 

different alcohols for surface functionalization with 

deposition cycles of [ROH-VTIP-W]x. Sample ‘none’ 

corresponds to normal ALD with a deposition cycle of 

[VTIP-W]x; the remaining samples refer to ROH in 

the SF-ALD deposition cycle of [ROH-VTIP-W]x. 
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Table 2.1 Growth rates of V2O5 with different alcohols used for surface functionalization. 

 

Sample Name Deposition Cycle Growth Rate (Å/cyc) 

ALD-V2O5 [VTIP-W]x 0.22 

EtOH-V2O5 [EtOH-VTIP-W]x 0.14 

iPrOH-V2O5 [iPrOH-VTIP-W]x 0.08 

MeOH-V2O5 [MeOH-VTIP-W]x 0.06 

 

The SF-ALD of BVO was examined with the same series of alcohols examined above. 

The SF-ALD deposition sequence was [ROH-VTIP-W-BiPh3-W]x. The use of EtOH, 

iPrOH, and MeOH for SF-ALD were found to result in increasingly Bi-rich depositions 

(Figure 2.2 and Table 2.2), following a consistent trend with GPC for SF-ALD of V2O5. 

The samples prepared using MeOH had stoichiometries closest to the 1:1 BiVO4 

compound, with 45.9 at%Bi and 54.1 at%V determined by mass-spectrometry (MS). For 

the remainder of this paper we thus focus exclusively on ternary BVO produced by SF-

ALD with MeOH (MeOH-BVO). Cross-sectional SEM confirmed conformal deposition 

on both Si and FTO substrates (Figure 2.3a-d). Measurements from the flat Si substrate 

were used to determine the growth rate of 7.5 nm for every 1,000 cycles of SF-ALD. This 

corresponds to a GPC of 0.075 Å/cycle that is remarkably quite similar to 0.07 Å/cycle 

from conventional ALD.43 The combination of a similar GPC with enhanced Bi content 

suggests that the SF step not only inhibits VTIP deposition, but also that the resulting 

surface, after hydrolysis, enhances the following BiPh3 deposition. Such mechanistic 

changes could be attributed to a combination of steric effects with the spatial distribution 

of active V-OH surface sites for BiPh3 catalytic deposition. 
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Sample Name Deposition Cycle at%Bi at%V 

ALD-BVO [VTIP-W-BiPh3-W]x 33.2% 66.8% 

EtOH-BVO [EtOH-VTIP-W-BiPh3-W]x 34.6% 65.4% 

iPrOH-BVO [iPrOH-VTIP-W-BiPh3-W]x 40.2% 59.8% 

MeOH-BVO [MeOH-VTIP-W-BiPh3-W]x 45.9% 54.1% 

 

The crystallization of MeOH-BVO films was examined by grazing incidence wide-

angle X-ray scattering (GI-WAXS) and SEM after high temperature calcination. The as-

deposited films were amorphous, similar to the prior reported bismuth vanadate films by 

conventional ALD (Figure 2.3).43 After heating to 450 oC for 1 hr the MeOH-BVO films 

exhibited strong reflections consistent with nearly phase-pure m-BiVO4. In contrast, the 

ALD-BVO sample exhibited a pattern consistent with a mixture of m-BiVO4, tetragonal 

bismuth vanadate (t-BiVO4), and orthorhombic vanadium oxide (o-V2O5), consistent with 

the significant excess of vanadium detected by MS. The MS data also indicated a 4.1 at%V 

Figure 2.2 Compositions for (SF)-ALD of 

BiVxOy prepared with different alcohols for 

surface functionalization using deposition cycles 

of [ROH-VTIP-W-BiPh3-W]x. 

Table 2.2 Composition of (SF)-ALD BVO films with different alcohols used for surface 

functionalization. 
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excess for the MeOH-BVO samples. This slight excess of vanadium did not result in an 

observable V2O5 phase for films 30 nm (Figure B.2). Additional GI-WAXS data for 

MeOH-BVO films on FTO substrates matched that of films on Si, albeit with additional 

substrate peaks (Figure B.3). Film calcination also resulted in minor morphology changes 

from crystallite formation. Films calcined on FTO substrates remained fairly uniform 

whereas films on Si substrates underwent dewetting (Figure 2.4e,f). MeOH-BVO samples 

enabled the crystallization of phase-pure and nearly stoichiometric m-BiVO4. 

 

 
 

 
 

Figure 2.3 GI-WAXS of MeOH-BVO films, both as-

made and calcined. For comparison, a calcined film 

from ALD-BVO is presented. All samples had 

x=4,000 deposition cycles. Graphs were offset 

vertically for clarity and fit data correspond to 

PDF#14-0688, 83-1812, and 89-0611, respectively. 

The calcination step was to 450 oC at 10 oC/min with 

a 60 min hold. 
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PEC Performance vs Thickness 

The calcined MeOH-BVO films were applied towards solar-assisted PEC water 

splitting with thickness ranging from 7.5 to 75 nm. With a GPC of 0.075 Å/cycle, this 

corresponds to samples made using 1,000-10,000 SF-ALD cycles. Here, the thickest 

samples examined were commensurate to the reported electron diffusion length of ca. 70-

75 nm in BiVO4.
5,8,51,52 The PEC performance is a product of several terms, including the 

light harvesting efficiency (LHE), the charge separation efficiency, and the charge injection 

efficiency (Equation 2.1), where JPEC is the measured photocurrent density, Jabs is the 

Figure 2.4 SEM of bismuth vanadates prepared by MeOH-BVO on Si (a,c,e) 

and FTO substrates (b,d,f). As-made films are shown in cross-section (top 

row, a,b) and top view (middle row, c,d). Crystallized films heated to 450 °C 

are shown in top view (bottom row, e,f). The deposition cycle was [MeOH-

VTIP-W-BiPh3-W]x where x was either 3,000 (b,e,f) or 6,000 (a,c,d). 
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photon absorption rate expressed as current density (determined from LHE), φsep is the 

carrier separation efficiency, and φinj is the charge injection efficiency.5,53–55 

JPEC=Jabs×ϕ
sep

×ϕ
inj

      (2.1) 

Here, the PEC performance was measured in the presence of a hole-scavenging sulfite 

electrolyte to pin the charge injection efficiency at 100% (φinj = 1). Thus, the measured 

photocurrents represent the voltage dependent product of light harvesting efficiency and 

charge separation efficiency. For this sample series, the photocurrent monotonically 

increased with sample thickness (Table 2.3 and Figure 2.5), corresponding to the expected 

trend in light harvesting efficiency, as confirmed by UV-vis measurements (Figure 2.6a). 

The highest photocurrent was measured with sample 75nm-10k with 0.69 and 1.21 

mA/cm2 at 0.60 and 1.23 V vs RHE, respectively. For thicknesses from 15-60 nm the 

photocurrent performance monotonically increases with one exception, vide infra, and 

notably all exhibited performance that was independent of the illumination direction. In 

contrast, after 60 nm of thickness there is a statistically significant difference where 

backside illumination results in more photocurrent than front side illumination. Since m-

BiVO4 has a lower electron diffusion length (majority carrier) than hole diffusion length 

(minority carrier), one expects better performance when carriers are generated closer to the 

electron-accepting FTO contact. This observation shows the transition to transport limited 

performance occurs between 60 and 75 nm, similar to prior estimations.5,10 The thinnest 

7.5 nm film produced negligible photocurrent presumably due to poor crystallization 

(Figure B.2a) or excessive recombination due to the FTO proximity.30,56,57 Such a “dead 

layer” effect has been noted before for PEC thin films, including Fe2O3 and BiVO4.
22,30,55–

58 In contrast to prior reports, however, MeOH-BVO yields photoactive films when >15 
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nm whereas a different synthesis route required >50 nm.55 A notable curiosity was the 

similar photocurrent response from both 30nm-4k and 45nm-6k. This exception to the 

trend discussed above was confirmed with multiple sample measurements produced from 

multiple SF-ALD depositions. There is a change in the GI-WAXS patterns between these 

two samples where a second phase of o-V2O5 is apparent in >30 nm film (Figure B.2b). 

This suggests a threshold thickness for accommodation of the excess 4.1 at%V as 

amorphous V2O5 or within the m-BiVO4 lattice. At this transition, the second phase and 

the associated interfaces lowered the charge separation efficiency to a similar extent as the 

increase in the light harvesting efficiency, resulting in comparable performance. From 

these results, it is concluded that MeOH-BVO films <75 nm are viable thin films for host-

guest applications. 

 

 
 

Sample 

Name 

Film 

Thickness 

(nm)* 

X, number of 

deposition cycles (k 

cycles) 

Photocurrent** 

at 0.6 V vs RHE 

Photocurrent** 

at 1.23 V vs RHE 

7.5nm-1k 7.5 1 0.098±0.002 0.035±0.005 

15nm-2k 15 2 0.08±0.01 0.22±0.01 

22.5nm-3k 22.5 3 0.14±0.02 0.34±0.05 

30nm-4k 30 4 0.35±0.02 0.70±0.02 

45nm-6k 45 6 0.30±0.02 0.67±0.03 

60nm-8k 60 8 0.42±0.03 0.81±0.03 

75nm-10k 75 10 0.69±0.04 1.21±0.04 

*Film thickness calculated from the product of the growth-per-cycle with the number of cycles 

(GPC*x) 

**Mean back-side photocurrent (mA/cm2) 

 

Table 2.3 A series of films with different thicknesses were prepared using the MeOH-BVO 

protocol. All samples were calcined after growth via the deposition cycle of [MeOH-VTIP-

W-BiPh3-W]x with varying values for x. 
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Figure 2.5 Photocurrent response for calcined MeOH-

BVO films of as a function of film thickness and 

applied potential. The electrolyte was 1.0 M potassium 

borate with a pH of 9.36 with 0.2 M Na2SO3 as hole 

scavenger. The dark current (dotted), photocurrent 

with backside illumination (dashed) and photocurrent 

with front side illumination (solid) are presented. The 

film thickness is specified in the legend followed by 

the corresponding number of MeOH-BVO deposition 

cycles x. 
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Further PEC insights were gained by examining the wavelength dependent incident 

photon-to-current efficiency (IPCE, Figure 2.6b) and the absorbed photon-to-current 

efficiency (APCE, Figure 2.6c). As expected, IPCE increases with thickness, albeit with 

the same performance overlap observed in the J-V data and discussed above. This is 

consistent with the expectation of improved LHE with thicker films. The APCE was 

calculated by normalizing the IPCE with the LHE, resulting in the wavelength dependent 

φsep for each sample. The monotonic trend of higher APCE with thicker films was attributed 

Figure 2.6 The (a) absorptance, (b) incident photon-to-current efficiency and (c) absorbed 

photon-to-current efficiency are shown for calcined MeOH-BVO films of various 

thicknesses. The IPCE and APCE were measured 0.6 V vs RHE in 1.0 M potassium borate 

with 0.2 M Na2SO3 as hole scavenger. The film thickness is specified in the legend 

followed by the corresponding number of MeOH-BVO deposition cycles, x. 
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to lower recombination rates in thicker films (due to the distance from the FTO/BiVO4 

interface). This observation suggests the future development of hole-blocking layers to 

mitigate recombination at the FTO interface.  

To confirm the validity of these measurements, the photocurrent at 0.6 V vs RHE (JJ-V) 

was compared to the integrated product of IPCE with the AM 1.5 spectrum (JIPCE, Table 

B.1). The photocurrents were matched within 15% for sample 75nm-10k. However, it was 

apparent that thinner films exhibited a greater difference that was attributed to the varying 

intensity between the simulated AM 1.5 spectrum used for J-V and the monochromator 

used IPCE measurements. Previous reports indicated a significant dependence of m-BiVO4 

quantum efficiencies with illumination intensity.10,51 

The PEC performance of SF-ALD BiVO4 electrodes were compared to BiVO4-V2O5 

electrodes prepared by conventional ALD that were subsequently etched yield a porous 

film of phase-pure scheelite.46 Please note that conventional ALD routes do not yet exist 

for phase pure BiVO4 without subsequent etching. Comparing films of similar thickness, 

these two synthesis methods result in similar plateau photocurrents with the SF-ALD 

BiVO4 exhibiting an improved onset potential 120 mV lower (Figure B.4). The 

photocurrent stability of SF-ALD BiVO4 films was examined under continuous 

illumination for 17 hrs (Figure B.5). After the initial PEC activation (t = 1 h), the 

photocurrent decreased by 11% over this period. 

The SF-ALD BiVO4 films presented here are promising for application towards host-

guest composites. Prior works have demonstrated mesoporous films with photocurrents 

over 3 mA/cm2 at potentials as low as 0.6 V vs RHE.5,9 In the past year, photocurrents at 

the thermodynamic water splitting potential of 1.23 V vs RHE of ≥5 mA/cm2 have been 
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reported with host-guest composites.8,9 These prior works used cathodic electrodeposition 

to produce BiVO4 films and thus are not ideally suited for elaboration with hole blocking 

materials at the FTO-BiVO4 interface. In contrast, the SF-ALD route presented here is 

compatible with arbitrary substrates, independent of their electronic properties. We 

anticipate that future studies with the SF-ALD of BiVO4 onto high surface area conductive 

substrates (such as nanostructured Sb:SnO2)
59 will lead to improvements in overall 

performance. 

Effects of PEC Activation Treatment 

A pronounced effect of PEC measurement time was noted for the performance of the 

above-discussed films. In all cases, the photocurrent continuously increased with 

measurement time until a plateau. Improvements as large as 380% were found in some 

cases. We thus developed a PEC activation treatment to quickly stabilize film performance 

before the above measurements were performed. Recent reports with other fabrication 

routes have also indicated that various pretreatments improve PEC performance. 

Pretreatments have been reported using controlled reduction and/or oxidation of V 

cations,9,60 ultraviolet light,61 and open-circuit exposure to AM 1.5 illumination.62 It was 

suggested that the elimination of surface oxygen by producing oxygen vacancies is the 

source of improved PEC performance.9,60–64 

A PEC activation treatment was developed to establish stable photocurrents before 

performance measurements (described in Experimental). The improved IPCE after PEC 

activation treatment was surprising since the films had uniformly reduced optical 

absorption (Figure 2.7a). The extent of change in performance was found to vary with film 

thickness. For 30 nm films the IPCE and APCE increased by 2.6x and 3.1x with the PEC 

activation treatment. For 60 nm films the IPCE and APCE increased by 3.8x and 4.1x with 
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the PEC activation treatment (Table 2.4 and Figure 2.7). We note that GI-WAXS of 

calcined MeOH-BVO films presented above indicated a change from single-phase m-

BiVO4 for ≤30 nm thick films to a mixture of m-BiVO4 and o-V2O5 for ≥45 nm thick films 

(Figure B.2). These thicker films with crystalline o-V2O5 exhibited the most change during 

PEC activation treatment, suggesting a dependence on the nature of the slight V-excess 

with MeOH-BVO deposition. 

 

 
 

Sample Name Treatment Film Thickness 

30nm None. Used directly following calcination 30 nm 

30nm-Activated 1hr at 0.6 V vs  RHE with AM 1.5 illumination 30 nm 

60nm None. Used directly following calcination 60 nm 

60nm-Activated 1 hr at 0.6 V vs  RHE with AM 1.5 illumination 60 nm 

 

 
 

 
 

To evaluate the efficacy of this multicomponent PEC activation treatment, multiple 

control experiments were run to isolate the effects of each component of the treatment. 

Measurements were performed on photo-only treated (Photo-Only), electrochemical-only 

(EC-Only) treated, and electrolyte-only (Soak) treatments (Table 2.5, see Experimental 

for details). As seen in Figure 2.8b and c, each aspect of the PEC activation treatment 

Table 2.4 The effectiveness of sample activation pretreatment varied with film thickness. 

All samples were calcined after growth from the same MeOH-BVO deposition cycle: 

[MeOH-VTIP-W-BiPh3-W]x where x was either 4k or 8k corresponding respectively to 

the 30 and 60 nm films. 

Figure 2.7 The effect of PEC activation treatment on (a) absorptance, (b) IPCE, and (c) 

APCE varied with film thickness. IPCE and APCE were measured at 0.6 V vs RHE in 1.0 

M potassium borate with 0.2 M Na2SO3 as hole scavenger. 
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improves both the IPCE and APCE performance of the films to some degree. The largest 

effect was found for the complete treatment (Activated). All treatment conditions, except 

Soak, reduced the absorptance of the films (Figure 2.8a). Thus the improvement with Soak 

may be attributed to surface changes such as the hydrolytic formation of hydroxyl groups 

and is not consistent with dissolution nor significant internal changes to oxidation states. 

In contrast, all other components of the PEC activation treatment (Photo-Only and EC-

Only) resulted in a concomitant reduction of absorptance with the improved performance. 

Previous reports have indicated that the V oxidation state in BiVO4 plays an important role 

with some hints of an optimal V+4/V+5 ratio.9,60,62 It was also demonstrated that AM 1.5 

illumination under open circuit can markedly improve some films where it was suggested 

that removing surface states assisted to unpin the Fermi level.62,65 Fermi level pinning from 

surface states has been identified in other photoanode materials, including Fe2O3 and 

TiO2.
66,67 However, the changes in absorptance observed with Photo-Only, EC-Only, and 

Activated are consistent with additional bulk redox changes within the films. 

 

 
 

Sample Name Treatment 

Control None 

Soak Soaked in electrolyte for 1 hr (open circuit, no illumination) 

EC-Only Applied 0.6 V vs RHE for 1 hr (no illumination) 

Photo-Only AM 1.5 illumination for 1 hr (open circuit) 

Activated Applied 0.6 V vs RHE during AM 1.5 illumination for 1 hr 

 

Table 2.5 The effect of each component of the PEC activation were investigated separately. 

All samples are calcined MeOH-BVO films prepared with [MeOH-VTIP-W-BiPh3-W]4,000 

resulting in a thickness of 30 nm. 
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X-ray photoelectron spectroscopy (XPS) was performed on 30nm-4k samples promptly 

after calcination as well as after the PEC activation treatment (Figure B.6; Calcined and 

PEC Activated, respectively). Changes to both the Bi and V oxidation states were detected 

at the sample surface as a result of the PEC activation treatment. Following calcination, 

films contained a minor component of reduced Bi0 and V4+ in addition to the expected 

BiVO4 states. The PEC activation treatment was found to fully oxidize these reduced states 

to Bi3+ and V5+. This oxidation process is consistent with the observed oxidation current 

during PEC activation (Figure B.5). The ALD of bismuth titanates with Bi(Ph)3 and water 

Figure 2.8 The absorptance, IPCE, and APCE varied with different components of the PEC 

activation treatment. IPCE and APCE were measured at 0.6 V vs RHE in 1.0 M potassium 

borate with 0.2 M Na2SO3 as hole scavenger. 
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was previously reported to result in a mixture of Bi3+ and Bi0.68 A recent also identified 

switchable oxidation states of V4+/5+ during electrochemical cycling below 0.5 V vs RHE.9 

In contrast, a recently reported open-circuit illumination pretreatment identified the 

reduction of V from the +5 to the +4 state with a corresponding increase in performance.62 

These results highlight the connection of synthetic route and defect chemistries that can 

enhance the performance of BiVO4 photoanodes. 

Neither crystallographic nor surface morphology changes were observed for any of the 

treatments (Figures B.7 and B.8). While mechanistically intriguing, the detailed study of 

PEC activation is outside the scope of this SF-ALD study. The developed PEC activation 

treatment resulted in a marked improvement of MeOH-BVO film performance. 

Conclusion 

The uniform deposition of thin film m-BiVO4 onto arbitrary hosts is necessary for the 

development of next-generation host-guest architectures for solar water splitting. The 

capability to deposit BiVO4 by ALD enables the further development independent of 

substrate properties. Phase pure monoclinic-scheelite BiVO4 was obtained by MeOH SF-

ALD and the resulting films were highly photoactive. Photoactivity was improved by 

applying a novel PEC activation treatment. Development of a layer-by-layer technique for 

PEC-functional BiVO4 with improved control over stoichiometry allows for the 

development of efficient multi-layer devices with advanced architectures. 
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CHAPTER 3: 

ALD OF SPACE-EFFICIENT SNO2 UNDERLAYERS FOR BIVO4 HOST-GUEST 

ARCHITECTURES FOR PHOTOASSISTED WATER SPLITTING
7 

                                                 
7 Lamm, B.; Zhou, L.; Rao, P.; Stefik, M. ChemSusChem 2019, DOI: 10.1002/cssc.201802566. 

Reproduced here with permission from the publisher. 
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Abstract 

Bismuth vanadate (BiVO4) is promising for solar-assisted water splitting. The 

performance of BiVO4 is limited by charge separation for >70 nm films or by light 

harvesting for <700 nm films. To resolve this mismatch, host-guest architectures use thin 

film coatings on 3D scaffolds. Recombination, however, is exacerbated at the extended 

host-guest interface. Underlayers are used to limit this recombination with a host-

underlayer-guest series. Such underlayers consume precious pore volume where typical 

SnO2 underlayers are optimized with 65-80 nm. Here we examine conformal and ultrathin 

SnO2 underlayers with low defect density produced by atomic layer deposition (ALD). 

This shifts the optimized thickness to just 8 nm with significantly improved space-

efficiency. The materials chemistry thus determines the dimension optimization. Lastly, 

we demonstrate host-guest architectures with an applied bias photon-to-charge efficiency 

of 0.71%, a new record for a photoanode absorber prepared by ALD. 

Introduction 

Bismuth vanadate has for the past decade been studied as a photoanode for 

photoelectrochemical (PEC) water splitting,1 with continuous performance gains over 

time.2–11 The monoclinic-scheelite phase (m-BiVO4) is the highest efficiency allotrope, 

with a conduction band edge near 0 V vs. the reversible hydrogen electrode (RHE). The 

valence band edge is near 2.4 V vs. RHE and the band gap is 2.4 eV.2,12,13 This band 

alignment provides holes in the valence band with excess potential to photo-oxidize water 

(1.23 V vs. RHE) while electrons have a potential almost suitable for hydrogen evolution 

(0 V vs. RHE), requiring mild external bias. 

Bismuth vanadate requires an optical thickness of ~700 nm for efficient light harvesting 

that is much larger than the sum of the limiting carrier diffusion length and the depletion 
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width.5,13,14 Electron transport is generally cited as the limiting carrier for charge separation 

with a transport length of ~70 nm.5,13,14 This combination of characteristics makes solid, 

compact BiVO4 films inherently inefficient. In contrast, the “host-guest” approach (Figure 

3.1c) decouples this mismatch of carrier transport from optical absorption by using BiVO4 

thin films (“guest”) upon a transparent, conductive scaffold (“host”).3,8,10 This approach is 

sometimes called “extremely thin absorber” (ETA).3,15–18 Recombination is, however, 

exacerbated with such high surface area devices where carriers are generated in close 

proximity to recombination sites at the host-guest interface (Figure 3.1a). A well-known 

method to mitigate recombination at such interfaces is to use an underlayer to block 

minority carriers (Figure 3.1b). For n-type materials like BiVO4, the underlayer is 

sometimes called a hole blocking layer or a “hole mirror.”6,19–25 Previous works have 

commonly utilized tin oxide (SnO2)
2,14,19,21–23,25–32 and tungsten oxide (WO3),

3,30,33 where 

SnO2 is perhaps the most studied underlayer material for BiVO4. Other materials that have 

been used as interfacial layers in BiVO4 photoanodes include TiO2,
34,35 Lu2O3,

20 and 

GaOxN1-x;
36 SnO2 was selected for this study based on its suitable band alignment relative 

to BiVO4, stability, low-cost, and as-yet unexplored investigation as a BiVO4 underlayer 

using atomic layer deposition (ALD). Popular synthetic methods for SnO2, e.g. spray 

pyrolysis, yield optimal PEC performance with 65-80 nm of underlayer thickness.2,21 With 

such a large film thickness, clearly more is at play than rectification. The optimal 

underlayer will (1) fully cover the host interface, preventing access to recombination sites 

located in the FTO, (2) not provide a new set of defects that promote recombination, and 

(3) have minimal thickness to limit the resistance for electron transport to the electrical 

contact. The optimal underlayer thickness for different synthesis routes is of minor 
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importance for flat compact films; however, it poses a significant limitation for practical 

use in 3D host-guest architectures with limited free-volume. Consider a design with 30 nm 

BiVO4, 80 nm SnO2, and a 3D porous host – it would require a 250 nm pore diameter to 

accommodate such a coating while leaving behind a nominal 30 nm final pore size. Such 

thick underlayers thus limit host-guest implementation by requiring large feature sizes that 

impose a poor balance of roughness factor to the out-of-plane transport length. 

Furthermore, such a scenario would require >50 vol% of non-photoactive material. The 

consequences of such spatially-inefficient and material-inefficient designs are shown 

schematically in Figure 3.1c/d. There are clear and significant benefits for the rational 

development of space-efficient underlayers. 

Here we examine the efficacy of conformal and low carrier density SnO2 thin films 

prepared by ALD as underlayers for BiVO4 PEC films. The use of an ALD synthesis 

method enables an optimized PEC performance with just an 8 nm underlayer. This result 

highlights the role of conformal character and minimal carrier density (i.e. low defect 

density) upon developing space-efficient underlayers. Finally, we demonstrate enhanced 

performance for host-guest architectures built upon antimony-doped tin oxide supports 

with a 0.71% applied bias proton-to-charge efficiency (ABPE) and a 3.7x improved 

photocurrent at 1.23 V vs. RHE as compared to the analogous flat film design. 
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Results and Discussion 

Photogenerated holes within BiVO4 would ideally all react at the water interface, 

producing solar fuel. However, holes generated in BiVO4 near the electron-rich FTO can 

undergo recombination and reduce the quantum efficiency. FTO-absorber interfaces are 

Figure 3.1 Recombination at the FTO interface with BiVO4 (a) is mitigated by addition of an 

underlayer composed of SnO2 (b). The importance of a space-efficient underlayer is shown 

graphically where limited pore dimensions are only compatible with space-efficient underlayers (c) 

whereas typical thicker underlayers would fully occupy the free pore volume, preventing realization 

of a host-guest architecture (d). Here BiVO4 is drawn as yellow, SnO2 as teal, and ATO nanowires 

are gray. 
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known to broadly promote recombination for diverse PEC materials,19,37–41 suggesting that 

the defects from deliberate fluorine incorporation are recombination sites. Previous reports 

utilized undoped SnO2 as an underlayer for BiVO4 where optimal thicknesses were ~80 

nm,2,21 and thinner SnO2 underlayers did not efficiently inhibit recombination. Common 

synthetic routes for SnO2 such as spray pyrolysis result in non-conformal underlayers with 

relatively high carrier concentrations (1019-1021 cm-3, Table C.1). These high carrier 

concentrations perhaps are a result of using SnCl4, resulting in halide defects similar to 

FTO and high free-carrier densities. We hypothesize that space-efficient underlayers will 

require conformal coating techniques with low defect density. The SnO2 produced by well-

known ALD protocols yields an ideal candidate to test this hypothesis with a conformal 

deposition technique that results in an order of magnitude reduced carrier density (Table 

C.1).42,43 The free carriers in SnO2 come from multiple candidate defects, including oxygen 

vacancies, tin interstitials, and extrinsic dopants such as Sb5+, F–, and Cl–.44,45 While these 

defects improve conductivity in SnO2, they are also possible recombination sites for PEC 

devices. Here, the use of a halide-free SnO2 precursor (TDMASn) prevents halide-

doping44,45 while the use of a strong oxidizing agent (ozone) suppresses the formation of 

oxygen vacancies, thus avoiding several of the candidate recombination centers. ALD also 

has the advantage of being a self-limiting deposition technique that facilitates conformal 

surface coatings within 3D porous substrates having a high roughness factor.42,43,46  

PEC performance vs. SnO2 thickness 

Looking towards space-efficient underlayers, we examined the efficacy of thin 2-32 nm 

SnO2 underlayers with low defect density prepared by ALD. With a SnO2 growth rate of 

0.692 Å per cycle, this corresponds to samples made using 30-480 SnO2 cycles of 

(TDMASn-O3)x; where sample names and corresponding characteristics are described in 
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Table 3.1. The inclusion of an SnO2 underlayer had no observed effect on the BiVO4 crystal 

structure, as measured by grazing-incidence wide angle X-ray scattering (GIWAXS; 

Figure 3.2a). Here the only GIWAXS changes noted are the increased intensity of peaks 

indexed to tetragonal SnO2 (cassiterite), corresponding to an increasing SnO2 thickness. 

Additionally, the SnO2 underlayer had no apparent effect on UV-vis absorptance in the 

measured wavelength range, regardless of underlayer thickness (Figure 3.2b). Here the UV 

absorption by the FTO-coated substrates obscures the absorption of such thin ALD SnO2 

films. Consistent with prior reports,5,7 the growth of BiVO4 by SF-ALD resulted in 

conformal films (Figure 3.3). The growth rate here was determined by SEM to be 0.0746 

Å per cycle when grown upon FTO or SnO2. 

 

 
 

 
 

Figure 3.2. GIWAXS measurements of flat BiVO4 samples with and without underlayers (a) as 

well as the corresponding UV-visible absorptance spectra (b). 
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Name Substrate 
SnO2 cycles [#] and 

thickness [nm] 

BiVO4 cycles [#] and 

thickness [nm] 

Flat-BV TEC-15 FTO 0-0 4000-30 

Flat-T2-BV TEC-15 FTO 30-2 4000-30 

Flat-T4-BV TEC-15 FTO 60-4 4000-30 

Flat-T8-BV TEC-15 FTO 120-8 4000-30 

Flat-T16-BV TEC-15 FTO 240-16 4000-30 

Flat-T32-BV TEC-15 FTO 480-32 4000-30 

 

The charge separation efficiency (φsep) was measured as a function of the ALD SnO2 

underlayer thickness. Here, the PEC performance was measured in the presence of a hole-

scavenging sulfite electrolyte to pin the charge injection efficiency at nearly 100% (φinj ≈ 

1). Thus, the measured photocurrents represent the product of the light harvesting 

efficiency (LHE) and the voltage-dependent φsep (Equations 3.1 and 3.2):47,48 

𝐽𝐻2𝑂(V) = 𝐽𝑎𝑏𝑠 ∙ 𝜙𝑠𝑒𝑝(V) ∙ 𝜙𝑖𝑛𝑗(V)    (3.1) 

𝐽𝑠𝑢𝑙𝑓𝑖𝑡𝑒(V) = 𝐽𝑎𝑏𝑠 ∙ 𝜙𝑠𝑒𝑝(V)     (3.2) 

Where Jabs is the photon absorption rate expressed as a current density (determined by the 

illumination spectra and LHE). The SnO2 underlayers absorbed little light since SnO2 is a 

wide-bandgap material (Eg ~3.6-4.0 V)46,49–51 and used here as very thin layers. Thus, with 

Figure 3.3. SEM images of sample Flat-T32-BV on Si in cross-section (a) and of sample Flat-T8-

BV on FTO from top-view (b). 

Table 3.1. Flat sample nomenclature and synthesis descriptions. 
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constant BiVO4 film thickness (constant LHE and Jabs) the improvements to photocurrent 

were attributed solely to improvements to φsep by reducing the rate of interfacial charge 

recombination. Complete J-V curves are presented for this sample series in Figure 3.4a. 

For the sake of brevity, we focus the discussion on the most important regime of 

performance under low applied bias voltage. Sample Flat-BV (without underlayer) 

exhibited a photocurrent of 0.19 mA cm-2 at 0.7 V vs. RHE, corresponding to φsep= 6.9% 

(Figure 3.4b). The addition of a SnO2 underlayer significantly improved the photocurrent 

and φsep monotonically until reaching a performance maximum with an 8 nm thick SnO2 

underlayer. This sample (denoted Flat-T8-BV) gave a photocurrent of 0.41 mA cm-2 at 0.7 

V vs. RHE, corresponding to φsep= 15.1%. This represents a 2.2x improvement in 

performance attributed to improved charge separation efficiency with deployment of an 

optimized underlayer. Samples with yet thicker underlayers, e.g. 16 and 32 nm, exhibited 

decreased performance, attributed to the ohmic resistance of the undoped SnO2. This is 

especially evident in performance of electrodes with a 32 nm SnO2 underlayer, where PEC 

performance is reduced to well below that of Flat-BV across most potentials. The thickness 

trend here is in stark contrast to other reported SnO2 underlayers that do not exhibit a 

maximum in performance until a total thickness of ~80 nm. We attribute the difference for 

ALD SnO2 to the improved film conformality and the reduced defect concentration 

evidenced by the low free carrier concentration (Table C.1). The lower performance of 

very thin films presented here (i.e. 2 and 4 nm SnO2) could have several causes: (1) there 

may be pinholes at the early nucleation stage (island growth) of ALD until a conformal 

layer is established, (2) the crystallization of amorphous ALD SnO2 may induce pinhole 

formation for very thin films, SEM images evidence such roughness from the 
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crystallization process (Figure C.1), and (3) fluorine diffusion from the FTO substrate can 

induce recombination centers in very thin SnO2 films. Such diffusion of fluorine into SnO2 

is reported to have a negligible spatial extent for the thermal conditions used here.52 These 

performance trends with underlayer thickness were also apparent in the applied bias 

photon-to-charge efficiencies (defined by Equation C.1)6 in Figure 3.4c. Here the 

maximum performance was found for sample Flat-T8-BV with an ABPE of 0.213% at 0.7 

V vs. RHE as compared to just 0.10% for Flat-BV. An optimal of all performance metrics 

was found for the 8 nm thick ALD SnO2, thick enough to suppress recombination and thin 

enough to avoid excessive resistance. 
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PEC performance of host-guest ATO-NTs/SnO2/BiVO4 

The optimized ALD underlayers were applied towards host-guest nanostructures to 

enhance the photocurrent response. Many previous reports have used cathodic 

electrodeposition of BiVO4, or precursors thereof.3,4,13,53–56 The application of cathodic 

currents is perhaps challenging subsequent to deposition of an underlayer intended to block 

holes. In contrast, ALD is capable of conformal depositions regardless of the electronic 

structure of any preceding layers. Our recently developed SF-ALD of BiVO4 is uniquely 

suited to enable host-guest strategies that include underlayers. A series of 3D 

nanostructured transparent conductors were used as hosts for the SF-ALD of 30 nm films 

of BiVO4. The hosts were composed of antimony-doped tin oxide nanotubes (ATO-NTs) 

prepared by hydrothermal growth and solution deposition, which had variable length from 

2.2-2.8 µm. 

Host-guest nanostructures were prepared with and without use of SnO2 underlayers 

(Table 3.2). SEM micrographs of the resulting host-guest nanostructures are shown in 

(Figures 3.5 and 3.6). The SF-ALD of BiVO4 appeared to reach the bottom of the ATO 

films where there was considerable roughness from the ATO nanotube synthesis. The 

expected BiVO4 thickness of 30 nm was visible with nanotube cross-sections after cleaving 

the tops of the nanotubes (Figure 3.6). The BiVO4 had some porosity as a result of 

densification and perhaps loss of residual organics during calcination. The PEC 

performance was investigated as a function of the prepared architectures. Comparison of 

host-guest sample ATO2.2-BV (without underlayer) to the corresponding compact Flat-

Figure 3.4. Flat BiVO4 PEC performance was measured with different ALD SnO2 underlayer 

thicknesses. The photocurrent (a), φsep (b), and ABPE (c) were measured. The electrolyte was 1.0 

M potassium borate with 0.2 M Na2SO3 as hole scavenger with a pH of 9.36. Simulated AM1.5 

sunlight was used for illuminated measurements. The dark current (dotted), photocurrent with 

backside illumination (dashed), and photocurrent with frontside illumination (solid) are presented. 
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~17 (Table 3.2). In contrast, the 30 nm thick Flat-BV sample only absorbed 15% of light 

with 500 nm wavelength (Figure 3.2b). The addition of the optimized underlayer was found 

to significantly increase PEC performance. Sample ATO2.2-T8-BV yielded a photocurrent 

1.33 mAcm-2 at 0.7 V vs. RHE, a 1.6x result as compared to ATO2.2-BV having the same 

architecture without an underlayer. This difference in performance for BiVO4 deposited on 

undoped ALD SnO2 versus ATO, again suggest a role of free-carrier producing defects 

upon enhancing interfacial recombination. 

 

 
 

Name 

ATO 

nanotube 

length (um) 

SnO2 cycles [#] 

and thickness 

[nm] 

BiVO4 cycles [#] and 

thickness [nm] 

Roughness 

factor* 

Optical 

thickness 

[nm]* 

ATO2.2-BV 2.2 0-0 4000-30 15.4 527.9 

ATO2.2-T8-BV 2.2 120-8 4000-30 15.4 562.4 

ATO2.8-T8-BV 2.8 120-8 4000-30 19.4 707.6 

*Calculated from a simplified geometric estimate (see SI for more details). 

 

 
 

 
 

Table 3.2 3D Host-guest sample nomenclature and synthesis descriptions. 

Figure 3.5. SEM images of ATO-NTs before (a, b) and after BiVO4 

SF-ALD (c, d). Sample ATO2.2-T8-BV is shown in panels c and d. 
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With the beneficial effect of an underlayer demonstrated for these host-guest 

architectures, we next examined optimization of light harvesting efficiency. A series of 

samples were compared with increasing nanotube length: ATO2.2-T8-BV and ATO2.8-

T8-BV. The photocurrent response was nearly identical with a peak photocurrent of 2.1 

mA cm-2 at 1.23 V vs RHE (Figure 3.7a). Comparing the estimated optical thickness for 

these two samples indicates that both are rather close to the ideal dimension of 700 nm for 

efficient light harvesting of 90% of the below-bandgap AM1.5G spectrum.6 The lack of an 

effect from nanotube length and lack of an effect from thus optical thickness here suggests 

that light harvesting efficiency is not the limiting factor here, but rather the bulk 

recombination rate of SF-ALD BiVO4. Further improvements to this performance would 

thus require new developments to manage bulk defect chemistry within BiVO4.
6,17,57–59 The 

ABPEs were calculated for all host-guest structures investigated with a maximum in 

performance for samples ATO2.2-T8-BV and ATO2.8-T8-BV having 0.71 % ABPE at 

0.71 V vs RHE (Figure 3.7b). These results highlight the advantage of including a space-

efficient hole-blocking underlayer within 3D host-guest nanostructures. 

The applied bias photon-to-charge efficiency is one of the most important metrics for 

PEC device performance as it includes the energetic cost of the applied bias.6 The 

Figure 3.6. Top-view SEM images of samples ATO2.2-BV (a) and 

ATO2.2-T8-BV (b) after light abrasion to break open nanotubes. 
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performance of PEC devices where the photoabsorber was prepared by ALD have often 

been lower than other synthetic methodologies. In light of these challenges, it is insightful 

to compare the performance here to other ALD derived PEC photoanodes. The 0.71% 

ABPE for sample ATO2.2-T8-BV represents the highest reported PEC performance of any 

photoanode material produced by ALD, to best of the authors’ knowledge (Table 3.3). 

Interestingly, sample Flat-T8-BV is also the highest performing compact film produced by 

ALD, highlighting that careful underlayer design is crucial for general performance 

improvements. 

 

 
 

 
 

 
 

Material ABPE [%] Photocurrent at 1.23 V vs RHE [mAcm-2] 

BiVO4 (ATO2.2-T8-BV) 0.71 2.1 

WO3 (host-guest)60 0.62 2.1 

BiVO4 (Flat-T8-BV) 0.213 0.62 

CuWO4 (compact)61 0.12 1.1 

α-Fe2O3 (host-guest)62 0.091 1.5 

Ta3N5 (compact)63 0.095 0.79 

α-Fe2O3 (compact)64 0.023 0.32 

Figure 3.7. Host-Guest PEC performance was measured with and without the optimized 

underlayer and as a function of nanotube length. The photocurrent (a) and ABPE (b) 

were measured. The electrolyte was 1.0 M potassium borate with 0.2 M Na2SO3 as hole 

scavenger with a pH of 9.36. Simulated AM1.5 sunlight was used for illuminated 

measurements. The dark current (dotted), photocurrent with backside illumination 

(dashed), and photocurrent with frontside illumination (solid) are presented. 

Table 3.3 PEC performance of photoanodes with absorber produced by ALD. 
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Conclusion 

Bismuth vanadate requires an optical thickness of ~700 nm for efficient light harvesting 

that is much larger than the limiting carrier transport length of 70 nm.5,13,14 The host-guest 

approach decouples this mismatch of carrier transport from optical absorption;3,8,10 

however, recombination at the host-guest interface is exacerbated with such high surface 

area devices. Tin oxide is a popular underlayer material for BiVO4, acting as a hole-

blocking layer typically optimized at 65-80 nm.2,21 Such thick underlayers, however, 

consume precious pore volume from the overall 3D host-guest design. The efficacy of low 

carrier density SnO2 underlayers were investigated for BiVO4 PEC performance. The use 

of an ALD synthesis method resulting in more conformal coatings with lower defect 

densities and enabled optimized PEC performance with only an 8 nm underlayer. Such thin 

underlayers yield considerably improved space-efficiency for deployment within 

reasonable host-guest architectures. The materials chemistry was shown to influence the 

underlayer thickness optimization. Host-guest architectures built upon ATO-nanotubes 

were demonstrated. SnO2 underlayers improved the performance where an overall 3.7x 

improved photocurrent was feasible at 1.23 V vs RHE. 

Experimental Methods 

Materials 

Tetrakis(dimethylamino) tin (TDMASn, 99%), triphenyl bismuth (BiPh3, 99%), and 

vanadium(V) oxytriisopropoxide (VTIP, 98%) were used as received from STREM. 

Deionized ultra-filtered (DIUF) water (Fisher), methanol (ACS Grade, Fisher), 2-propanol 

(70% lab grade, BDH), H3BO3 (ACS Grade, VWR Life Science), Na2SO3 (ACS Grade, 

Macron), and KOH (ACS Grade, Fisher) were used as received. TEC-15 fluorine-doped 

tin oxide coated glass (FTO) was purchased from Hartford Glass. The FTO substrates were 

cleaned extensively before used with 2-propanol and DIUF water before sonication in 
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soapy water (Decon Contrex, 2 wt%), followed by additional rinses with water and 2-

propanol, followed by sonication in 2-propanol. Polished n-doped silicon wafers with (100) 

orientation were purchased from University Wafers, USA. The cleaned FTO substrates and 

silicon wafers were calcined using a Barnstead Thermolyne muffle furnace at 450 oC for 1 

h immediately prior to deposition. High-temperature grade Kapton tape was purchased 

from McMaster-Carr, USA. Ultra-high purity nitrogen (99.999%) and oxygen (99.5%) 

were used as received from Praxair. 

ATO nanotube synthesis 

The hydrothermal growth of ZnO nanorod array (NRA) template was adapted from 

previous reports.10,65,66 Arrays of ZnO nanowires were synthesized on 3x3 cm2 FTO 

substrates (Hartford Glass, IN), that were cleaned thoroughly by acetone + isopropyl 

alcohol + deionized water sonication before coating with a seed layer (5 mM acetate 

dihydrate in ethanol) by spin coating at 2000 rpm for 30 s. Samples with seed layer were 

annealed at 350 oC for 30 min.  

ZnO nanowires were grown by immersing seeded substrates in aqueous solutions 

containing 25 mM zinc nitrate hexahydrate (98%, Sigma Aldrich) and 25 mM 

hexamethylenetetramine (99%, Sigma Aldrich) at 90-95 oC for 1 hour and 2 hours. To 

obtain longer nanowire arrays, 1-hour and 2-hour grown substrates were introduced to fresh 

solution (20 mM zinc nitrate hydrate and 20 mM hexamethylenetetramine) and grown for 

additional 2 hours. The total growth time for the two types of samples were 2 hours and 3 

hours (1 hour followed by 2 hours). 

The Sb:SnO2 nanotube arrays were synthesized by coating Sb:SnO2 layers onto the ZnO 

nanowires template. A Sb:SnO2 solution containing 0.1225 g SnCl2 (98%, Sigma Aldrich) 

and 0.01 g SbCl3 (99%, Sigma Aldrich) in 10 mL 2-methoxyethanol (99%, Alfa Aesar) 
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was drop cast onto the ZnO nanowire templates. After 4 layers of Sb:SnO2 coating, the 

substrates were annealed in a furnace in air at 550 oC for 2 hours to crystallize the Sb:SnO2 

nanotube shell. Then, the ZnO nanowires template with the Sb:SnO2 shell was etched in 

acetic acid (99.7%, Sigma Aldrich) for 2 hours and thoroughly washed in deionized water 

to remove the ZnO nanowires template from the substrates. After first time growth, 

substrates were again repeatedly drop casted with Sb:SnO2 solution, annealed in furnace 

and etched in acetic acid one more time to make the Sb:SnO2 nanotube arrays with thicker 

walls. 

Atomic layer deposition of tin oxide and bismuth vanadate films 

Samples were masked using Kapton tape to define the deposition region on the back 

and partially on the front to provide clean electrical contacts for PEC measurements. 

TDMASn was loaded into a stainless steel cylinder in an argon glovebox. The cylinders 

were sealed and connected to an Arradiance Gemstar-8 reactor. Nitrogen was used as a 

carrier gas and the purging gas. A Nano ozone generator (Absolute Ozone, Canada) was 

used to supply ~10 wt% ozone. The ozone generator was primed with flowing O2 prior to 

deposition. Nitrogen was used as both the carrier gas and the purging gas. Precursor dosing 

was controlled using Swagelok ALD valves. The TDMASn was heated to 55 oC. The 

oxidant and precursor manifolds were heated to 100 and 130 oC, respectively. The reactor 

chamber was set to 115 oC. The TDMASn and ozone had pulse times of 1500 and 100 ms, 

respectively. The reactor chamber was isolated before each pulse to contain the precursors 

for 1 s after exposure (“exposure mode”). Excess precursors were purged after each 

exposure using 200 sccm nitrogen for 10 s. The deposition was organized into a macrocycle 

of (TDMASn-O3)a where ‘a’ controlled total thickness deposited. Tin oxide films on silicon 
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wafers and FTO were calcined prior to bismuth vanadate deposition. A comprehensive 

ALD protocol is provided in Table C.2. 

Bismuth vanadate deposition followed a previously published surface functionalized 

ALD (SF-ALD) procedure,5 following from the original ALD bismuth vanadate 

demonstration.7 The BiPh3 and VTIP cylinders were heated to 130 and 45 oC, respectively. 

The reactor manifolds and chamber were set to 130 oC. Both metal precursors had a pulse 

time of 2 s, methanol had a pulse time of 50 ms, and water had a pulse time of 25 ms prior 

to methanol and 100 ms prior to BiPh3. A vapor-boosting 20 ms pulse of nitrogen was 

added to the BiPh3 cylinder just prior to each pulse. The reactor was isolated in exposure 

mode for 1 s. Excess precursors were purged after each exposure using 200 sccm nitrogen 

for 10 s. The deposition was organized into a macrocycle of 

(methanol/VTIP/water/BiPh3/water)b where methanol was used to control composition and 

‘b’ controlled total thickness deposited; a comprehensive ALD protocol is provided in 

Table C.3. 

Film treatments 

The ALD films were heated to induce crystallization. Samples were heated at 5 oC min-

1 to 200 oC, followed by 10 oC min-1 to 450 oC, held constant at 450 oC for 1 h, and allowed 

to cool in the furnace. 

Prior to linear sweep voltammetry (LSV), chronoamperometry (CA), and absorptance 

measurements, films on FTO were exposed to an external bias of 0.6 V vs. RHE (–0.153 

V vs. Ag/AgCl at pH 9.36) under AM 1.5 illumination for 1 h (termed PEC activation).5,6 

Films on ATO NTs were exposed to an identical procedure for 2 h. 
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Diffraction 

X-ray diffraction experiments were conducted using a SAXSLab Ganesha at the South 

Carolina SAXS Collaborative. A Xenocs GeniX 3D microfocus source was used with a Cu 

target to generate a monochromatic beam with a 0.154 nm wavelength. The instrument was 

calibrated using silicon powder (NIST 640d). Scattering data were processed from the 

scattering vector q = 4πλ-1sinθ where λ is the X-ray wavelength and 2θ is the total scattering 

angle. A Pilatus 300 K detector (Dectris) was used to collect the two-dimensional (2D) 

scattering patterns. Samples were measured with the beam at an incident angle of 8o relative 

to the film plane. SAXSGUI software was used to radially integrate the 2D patterns to 

produce 1D profiles. 

Photoelectrochemical and electrochemical measurements 

LSVs were measured using a three-electrode potentiostat (BioLogic SP-150) with a 

Ag/AgCl/KCl (saturated) reference electrode (Pine Instruments) and a platinum wire 

counter electrode (Pine Instruments). Samples on FTO substrates were clamped with a 

titanium sheet to provide an ohmic contact. The electrodes were placed into a cell made of 

polyether ether ketone (PEEK) with a fused-silica window. Simulated sunlight was 

generated using a 75 W xenon arc lamp (OBB, Horiba) that passed through a water infrared 

filter (OBB, Horiba), a KG-3 filter (317-710 nm pass, Edmund Optics), and a BG-40 filter 

with an antireflective coating (335-610 nm pass, Thorlabs). This combination of filters 

removed much of the UV light where the Xe lamp has the most spectral mismatch from 

the AM1.5 spectrum. The transmitted light was collimated using a fused-silica lens 

(Thorlabs) and passed through an engineered diffuser with a top-hat profile to provide a 

homogenous intensity profile with a slight 10o divergence. The transmitted light was 

corrected for brightness in the 335-610 nm spectral range to generate a photocurrent 
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identical to AM 1.5G sunlight. The illumination intensity was measured using a calibrated 

UV-enhanced silicon photodiode (Thorlabs) equipped with a neutral reflective filter 

(optical density 1.0, Thorlabs) to maintain a linear and calibrated photodiode response. 

This calibration practice provides accurate solar simulation in terms of both spectral 

distribution and brightness with a minimal correction factor.67 PEC measurements were 

performed in 1 M potassium borate with 0.2 M sodium sulfite (Na2SO3) as hole scavenger 

at pH 9.35. It has been well established that potassium phosphate buffers dissolve BiVO4 

at working pH values;4,68,69 however, BiVO4 photoanodes are stable in alkaline borate 

buffers. The potassium borate solution was prepared by adjusting the pH of 1 M H3BO3 in 

DIUF water to 9.35 ± 0.02 with KOH as confirmed by a calibrated Thermo Scientific 

OrionStar A211 pH meter. The sulfite acted as a hole scavenge to provide quantitative 

charge injection from the semiconductor to the electrolyte for the measurement of film 

performance without catalysts. The samples were scanned from -0.600 to 0.650 V vs. 

Ag/AgCl reference electrode at 10 mV s-1. Multiple scans were completed at each condition 

to confirm reproducibility and the second scan results were reported. For host-guest 

samples on ATO nanotubes, N2 sparging was used during all PEC measurements to 

circulate the electrolyte and dislodge gas bubbles trapped at the surface. 

Quantum efficiencies were calculated based on chronoamperometry (CA) 

measurements made with monochromatic light while using the same potassium phosphate 

buffer described above. Illumination was generated using a 150 W xenon lamp (OBB, 

Horiba) that passed through an 180o monochromator with a 5 mm slit width and 1200 grates 

per mm diffraction grating (OBB, Horiba). Transmitted light was collimated using a fused-

silica lens (Thorlabs) and passed through an engineered diffusor with a top-hat profile to 
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provide a homogenous intensity profile with a slight 10o divergence. CA measurements 

were recorded at 0.4784 V vs. Ag/AgCl reference electrode (1.23 V vs. RHE) unless 

otherwise noted. All electrochemical potentials E were reported versus the reversible 

hydrogen electrode (RHE) using the formula E(vs. RHE) = E(vs. Ag/AgCl) + 

Eref(Ag/AgCl) + 0.059 V x pH where Eref = 0.197 V in this case. 

For both CA and LSV measurements, representative samples of a given set were plotted 

with the mean (indicated as ‘x’) and bars for the error of the mean. 

Optoelectronic properties 

The optical response of thin films was measured using a Shimadzu UV-2450. A 

sandwich configuration of FTO-water-fused quartz was used to minimize light scattering 

differences between the blank measurement of bare FTO and samples coated onto FTO. 

Identical measurements on FTO were used to establish the baseline for the measurements 

of the optical properties of the deposited films alone. 

Morphology 

A Zeiss Ultra Plus scanning electron microscope (SEM) was operated at 5 kV using an 

in-lens secondary electron detector to observe the film surface and cross-sectional 

acquisition. ALD growth rates were calculated based upon cross-sectional SEM imaging 

of films in the 20-100 nm thickness range. 

Hall Effect Measurements 

Electronic properties were measured via a Hall probe (MMR Technologies K2500) with 

100 nm Al contacts connected by magnetic sputtering to a 500 nm thick SnO2 sample on 

quartz. Measurements were made with a 12.5 kG magnetic field and 5.14 nA current. The 

sample was made by five consecutive 100 nm ALD depositions described above, with heat 

treatments between each deposition. 
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CHAPTER 4: 

PERSISTENT MICELLE TEMPLATES FOR TUNABLE POROUS CARBONS 
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Abstract 

Porous carbon materials offer a flexible platform, with applications in filtration, 

catalysis, and microelectronics. Tuning important feature sizes of these materials (e.g. pore 

size, wall thickness) is important for applications where multiple transport pathways are 

active (e.g. solute diffusion in electrolyte, charge transport through material), such as 

supercapacitors. Persistent micelle templates (PMT) have proven useful in the independent 

tuning of nanometer-scale features such as wall thickness and pore size. To date, PMT has 

maintained kinetic control of polymer chain exchange through the solvent, via the Flory-

Huggins χ parameter. Here, PMT is applied for the first time with carbon materials where 

phase partitioning dramatically changes solvent conditions, resulting a low-water content 

organic phase without sufficient χ barrier towards chain exchange. A new kinetic barrier 

was advanced based upon chain mobility by using block polymer micelles with a glassy 

core. 

Introduction 

Porous carbon materials have long been utilized for a variety of applications, from 

filtration to catalyst supports to electronic devices.1 To date, porous carbons have primarily 

been synthesized through direct carbonization, ice templates, hard templates, and soft 

templates.2–4 Of the templating methods, soft templates offer the simplest route for 

synthesis of mesoporous carbons, offering tight control over pore sizes and not requiring 

hazardous etching steps.1 

Synthesis of porous carbon materials has benefitted from block copolymer (BCP) 

templating; however, much of the work on carbon-BCP templates has been restricted to 

using Pluronics as the structure directing agent,5–7 limiting the pore sizes accessible from 

soft templates. Pluronics are widely available and very affordable, though the low 
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molecular weight of the hydrophobic poly(propylene oxide) block (~3.7 kg mol-1) limits 

the final pore size to ~6 nm.7 Additionally, while larger BCPs (such as PEO-b-PMMA and 

PEO-b-PS) give access to larger pore sizes,8,9 especially in combination with secondary 

techniques like freeze drying or ice templating,10 the tuning of material (e.g. phenolic resin) 

and template at a minimum alters wall thickness and pore size simultaneously due to 

changes in the microphase separation equilibrium,11–16 while more drastic changes to 

template architecture have been noted in the literature – for example, transitions from 

randomly packed spheres to lamellae.7 

Persistent micelle templates, a self-assembly technique developed by the Stefik group, 

prevents the equilibrium-driven rearrangement of polymers during self-assembly by 

creating a kinetic barrier to polymer chain transfer.17,18 To date, this barrier has been 

imposed by the solvent conditions of the system, where a static or mildly agitated solution 

does not induce polymer chain exchange. However, chain exchange can be selectively 

permitted by providing more energy to the system, typically in the form of sonication.18 

PMT has proven useful in creating fully tunable metal oxide materials, where wall 

thickness and pore size can be controlled independently.19 Material tunability allows for 

simultaneous optimization of orthogonal properties such as solute diffusion rates and 

conductivity. Carbon persistent micelle templates (CPMT) are designed to expand the 

advantages achieved with PMT of metal oxides by substituting the material templated from 

a metal oxide (e.g. TiO2, SnO2, Nb2O5, etc.) for phenolic resins.  

Phenolic resins are synthesized via polycondensation of a phenolic derivative (phenol, 

resorcinol, or phloroglucinol, with one, two, or three substituent alcohols) and a bridging 

agent, typically formaldehyde.6 This reaction is easily run in a variety of solvents (e.g. 
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alcohols, THF, acetone),5,20,21 and is typically catalyzed under basic or acidic conditions.22–

24 Resorcinol-formaldehyde (RF) resins are attractive for the increased rate of reaction 

compared to phenol-formaldehyde resins as well as access to a facilely tunable crosslinking 

chemistry.6,23 The presence of multiple alcohol groups on resorcinol activates three sites 

for hydroxymethylation (eq 2 in Scheme 4.1), leading to three potential bridging sites per 

resorcinol. 

 

 
 

 
 

Results and Discussion 

CPMT with PEO-b-PHA 

Thin films 

Thin films of this series, using PEO-b-PHA as a templating agent and methanol as the 

primary solvent, were useful in establishing appropriate conditions for RF resin synthesis. 

Primarily, these conditions are the aging conditions, resorcinol to formaldehyde mole ratio 

(R:F), and resorcinol to catalyst (HCl) mole ratio (R:C).  

Scheme 4.1. A proposed mechanism for RF gel formation under acid catalysis. Reproduced with 

permission from Ref 12. 
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The summary of the simplest results is as follows: adjusting the R:F mole ratio from 1:1 

to 1:3 controls the extent of crosslinking within the resin from one bridging functionality 

to a fully crosslinked RF system, while higher ratios (e.g. 1:6) affect the rate of reaction 

via the Le Chatlier’s principle; adjusting the R:C mole ratio is used to affect the rate of 

reaction but will also affect the water content minimum. For methanol-based samples 

templated with PEO-b-PHA, the R:C ratio is held with majority resorcinol (RC values of 

8 or 4). 

It was quickly observed that thin films – particularly from spin coating – age quickly, 

becoming visibly pink within 25 min of aging at high catalyst loadings (Figure 4.1). The 

development of color in RF resins is a useful indicator for the extent of reaction, where the 

presence of the color indicates the presence of o-quinone methide intermediates.23 

 

 
 

 
 

Structure control with PEO-b-PHA was minimal at best, where changes to equilibrium 

polymer phase (e.g. transitions from randomly packed spheres to lamellae) suggest 

dynamic chain exchange; however, the extent of reaction prior to casting (via spin coating, 

dip coating, etc.)25 – designated “gel time” – and the water content were identified as 

significant parameters. From SAXS results (Figure 4.2), it was observed that relatively 

high water contents (10 wt%) and gel times of ~25 min produced the highest-order 

Figure 4.1. RF reaction progression with curing time at 40 oC in air. Sample CM01. 
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structures. While the SAXS patterns are consistent with lamellae, instead of the desired 

persistent micelles, these water contents and gel times should still be relevant when casting 

solutions templated with glassy micelles (vide infra). Tested conditions that had little to no 

observed effect on structure include the curing time (in a humidity chamber) and dipping 

the spin coated film in acid prior to aging (Figure D.1). 

 

 
 

 
 

Freeze-dried 

Freeze drying was only trialed for two samples, both using butanol as the primary 

solvent. The motivation for using freeze drying as a secondary templating technique comes 

from research by the Giannelis group, where freeze drying resins templated with silica as 

a hard template in a butanol/water mixture produced hierarchical porous structures, 

resulting in mixed pore sizes of ~10 and ~2 nm were observed. The smaller pores were 

formed by the templating agent while the larger pores were induced by material 

displacement from ice crystals.10 

Both freeze dried samples tested failed to achieve the desired results, and from SAXS 

appear to have become dynamic (Figure 4.3a). In the first sample, the failure seems to have 

been from an insufficiently high thermal gradient, as extensive sample loss occurred during 

freeze drying where the sample had been frozen in a dry ice bath with isopropanol. For the 

Figure 4.2. Effect of water content and gel time on RF resin organization. 
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second sample, insufficient time was given for RF polycondensation (that is, too little gel 

time) prior to freezing and vacuum drying (Figure 4.3b,c). 

As freeze-drying was unsuccessful in both instances, this synthetic route was abandoned 

while the recipe was improved to prevent polymer rearrangement. 

 

 
 

 
 

Phase-separation 

As described in the previous subsection, freeze-drying of RF resins proved difficult to 

achieve, given the variety of variables at play. As it was identified that the resin templates 

were becoming dynamic (instead of persistent micelles), focus was turned to templating 

the resin to a fully crosslinked solid prior to solvent removal via freeze drying. Parameters 

tested include gel time, water content, and temperature during gelling. From the SAXS 

results corresponding to gel time and temperature (Figure 4.4a) and high water contents 

(Figure 4.4b), bulk carbon templates with PEO-b-PHA are consistently dynamic. 

 

Figure 4.3. (a) SAXS of CB01, with a R:F mole ratio of 1:2 or 1:3; images of freeze dried CB01 

(b) and CB02 (c) with RF 1:2 left and 1.3 right. Samples CB01 (a,b) and CB02 (c). 
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Dynamic polymer templating can be easily identified by two methods, both of which 

are accessible by SEM: (1) changes to the pore size or (2) transition of the polymer 

architecture from, for example, spherical micelles to lamellae. Such a transition as the latter 

case was observed for samples of MT 0.4 and 3.0, at 10 wt% H2O, RF 1:3, and R:C 4:1. 

 

 
 

 
 

Summary 

The initial trials with CPMT using PEO-b-PHA yielded interesting results, showing the 

importance of basic parameters like the mole ratios of resorcinol to formaldehyde and HCl, 

as well as the new parameter (gel time). However, it is obvious that some fundamental 

characteristic of RF resins is incompatible with PMT in its current configuration and 

requires an adaptation of the technique to prevent dynamic micelle transitions. 

Figure 4.4. SAXS of phase-separation resins versus gel time and temperature (a), and water content 

at (b) 80 oC or (c) 60 oC. Samples CB15 (a) and CB18 (b,c). 

Figure 4.5. SEM of carbonized RF resins from freeze drying. M:T ratios of (a) 0.4, (b) 1.0, and (c) 

2.4. Samples from CB08. 
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Following the observation, both here and in the literature, that extended gel times result 

in phase separation of the solvent and resin, it is hypothesized that the rate of polymer 

rearrangement is higher than the rate of resin polycondensation, regardless of reaction 

temperature. Because of the solvent phase separation, the solvent itself cannot be the handle 

to induce a kinetic barrier on polymer rearrangement. Further work (vide infra) will 

substitute the soft PEO-b-PHA templating agent with a copolymer containing a glassy core 

block (either PMMA or PS). 

CPMT with PEO-b-PMMA 

From the results described above using PEO-b-PHA as a templating agent, efforts with 

PEO-b-PMMA started with a focus on the parameters identified as most significant – i.e. 

RF, RC, and water content. 

To disperse the polymer, the polymer was first micellized using a solvent exchange 

method described in the Experimental Methods section.26 The recovered polymer micelles 

were soluble in methanol with slight heating (40 oC), with a mean particle hydrodynamic 

radius of 20 nm by DLS in a 96/4 wt% methanol-water solution (Figure D.2), down from 

50 nm in pure, dry methanol. 

Here, regardless of water content, R:C mole ratio, and aging temperature, 

reproducibility of structures (dynamic or otherwise) could not be achieved. 

Problems with reproducibility in the PEO-b-PMMA system were initially suspected to 

stem from the interactions between the two blocks – i.e. PEO and PMMA. As has been 

shown previously in the literature, PEO and PMMA can intermix.9 This intermixing can 

result in material crossover from the corona to the core. Further reading in the literature 

has suggested an alternative route for the loss of persistence due to solubility of PEO-b-

PMMA in alcohol-water mixtures. As observed by Hoogenboom, et al.,27 PS-b-PMMA 
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can be dissolved into an 80/20 mixture of ethanol and water, where this solvent ratio was 

shown to achieve a high loading of PMMA. If it is the case that PMMA is plasticized by 

water-alcohol mixtures, then this copolymer would be expected to suffer similar obstacles 

with templating as PEO-b-PHA. Additionally, PMMA solubility was also noted as 

dependent on the specific alcohol-water ratio used, which might be part of the problem 

observed with changing M:T ratios – as the increase in M:T requires an increase in 

formaldehyde present, and consequently water content. 

CPMT with PEO-b-PS 

Polystyrene is well known to be insoluble in alcohols and will thus remain glassy in 

solution as a copolymer with PEO. However, this very benefit is itself an obstacle to 

forming micelle templates. The problem arises in how to disperse PEO-b-PS in a 

nonsolvent for PS, and especially how to control the dispersity of the micelle population 

once the polymer is dispersed. 

Polymer dispersion was first attempted by replicated the solvent exchange method used 

for PEO-b-PMMA; however, there were consistently both solubility and reproducibility 

problems using this method (dissolving polymer into THF and adding water dropwise, 

followed by collection via rotary evaporation). This solvent exchange technique was 

adjusted by several methods, including changing the addition order (e.g. THF into water), 

changing the pH of the water solution (substituting DI water for 3, 5, or 12 M HCl), 

substituting THF for acetone, and the addition rate of either water or HCl to the 

THF/polymer solution. The size of particles in solution was tracked by DLS throughout 

this process and consistently resulted in >1 μm-sized particles in solution. Importantly, it 

was confirmed that the polymer formed unimers in THF and aggregated in THF/water 

mixtures (Figure 4.6), demonstrating that micellization (and eventually aggregation) of 
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PEO-b-PS does occur in THF/H2O mixtures and suggesting that this solvent system is still 

viable for formation of glassy persistent micelles. From these results, it is suspected that 

the presence of THF in the solvent mixture was plasticizing the PS cores, allowing for core-

core aggregation and the observed micron-size particles. 

 

 
 

 
 

To form glassy-core micelles while minimizing THF content in solution, the solvent 

exchange process was adapted to the method described by Skrabania, et al.28 Briefly, 

polymer in a low boiling good solvent (THF) is added to a hot, high boiling bad solvent 

(90 oC water) dropwise. Enough time is given between drops to fully remove the good 

solvent (typically 8-10 s). Anecdotally, an audible popping can be heard when adding THF 

to water above 86 oC. As before, the hydrodynamic radius of particles in solution was 

tracked by DLS with polymer addition. As can be seen in Figure 4.7, the number of large 

particles grows quickly as the polymer concentration increases. It is hypothesized that this 

particle growth stems from the concentration of the polymer in both THF and in the water 

bath. As a drop of THF/polymer interacts with hot water, the THF is first diluted by water, 

forcing the polymer into a poor solvent, before the THF is boiled off. During this transition 

Figure 4.6. DLS of PEO-b-PS in THF and 

THF/H2O. 
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from pure THF to pure water, the polymer unimers will be energetically driven to 

microphase separate from solution and will do so by forming micelles with other unimers 

from the THF drop (in the dilute water bath case) or will interact with particles already 

formed in water. Here, if the concentration of polymer particles in water is high enough, 

particles in water would be expected to increase in size as more polymer is included. 

Additionally, the dispersity of the particle sizes in pure water as the concentration of 

polymer in THF increases. Therefore, preforming micelles should be beneficial, and for a 

couple reasons: (1) avoiding the particle selection lottery described above, which lead to 

polymer particle growth in water, and (2) allowing for micelle dispersity control via 

sonication prior to impeding chain transfer by changing the cores from soft to glassy. 

 

 
 

 
 

Micelles preformed in a THF/4 wt% H2O solution were added dropwise to hot water 

and micelle size was tracked by DLS with polymer concentration in water (Figure 4.8). 

Here it is observed that the micelle size remains much more consistent during polymer 

addition. This is seen in both the number-average data (Figure 4.8a), which is consistently 

around 100 nm, and size-weighted data (Figure 4.8b), where the particles are consistently 

a few hundred nanometers in hydrodynamic radius, and only a few large aggregates are 

Figure 4.7. Hydrodynamic radius of particles with increasing polymer concentration during 

addition of THF to hot water. (a) Normalized vs. particle number, (b) normalized vs. (particle size)6, 

and (c) mean particle size vs. polymer concentration. 
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observed. Compare this with the previous tests using pure THF, where large aggregates at 

or above the detection limit become a significant contribution early in the measurements. 

Based on these results, the procedure for micellization seems best with a THF/4 wt% H2O, 

where larger particles can be easily removed by filtration while preserving the bulk of the 

micelle population as ~100 nm particles. To improve the yield of polymer as free (non-

aggregated) micelles, sonication of the final water solution should be tested. 

 

 
 

 
 

Summary and Future Work 

The development of carbon persistent micelle templating as revealed some drawbacks 

to the first generation of PMT processing, primarily defined by a fundamental dependence 

on solvent conditions. Here it was shown that with the removal of solvent in a soft system 

– either as a thin film or during phase separation processes – chain exchange is kinetically 

accessible for soft templating polymers, leading to dynamic micelles and equilibrium 

architecture transitions. To avoid this obstacle, PMT has been adapted to utilize 

copolymers containing a glassy hydrophobic block. 

Once the process for creating glassy-core persistent micelles is finalized – establishing 

the processes for collection and utilization in templates – templating of carbon resins is 

Figure 4.8. Hydrodynamic radius of particles with increasing polymer concentration during 

addition of THF/4 wt% H2O to hot water. (a) Normalized vs. particle number, (b) normalized vs. 

(particle size)6, and (c) mean particle size vs. polymer concentration. 
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expected to proceed rapidly. Resin templates from bulk casting or thin films will be trialed 

first to establish effective gel times prior to curing or coating, followed by M:T weight ratio 

studies to track morphology changes (e.g. wall thickness). 

To this point, the primary focus of this study was to extend the morphology tunability 

of PMT to porous carbon materials, depending on well-established chemistries for a carbon 

source – i.e. resorcinol-formaldehyde resins. However, the use of gaseous materials – HCl 

as catalyst and formaldehyde as reactant – represent a significant challenge to recipe 

flexibility when comparing thin films to bulk cast materials. Changing RF resin for a 

process that does not require gaseous components in solution would therefore be desirable. 

Phloroglucinol-glyoxylic acid (PG) resins are chemically similar to RF resins, except here 

glyoxylic acid functions as both crosslinking moiety and catalyst. It should also be noted 

that removing formaldehyde (a known carcinogen) has the additional benefit of making 

CPMT more attractive industrially, especially if less-toxic solvents can be utilized (e.g., 

ethanol or water in exchange of methanol). 

Materials and Methods 

All chemicals were acquired from commercial sources and used without further 

purification except where noted. 

Morphology 

A Zeiss Ultra Plus scanning electron microscope (SEM) was operated at 5 kV using an 

in-lens secondary electron detector to observe the film surface and cross-sectional 

acquisition. 

Diffraction 

X-ray diffraction experiments were conducted using a SAXSLab Ganesha at the South 

Carolina SAXS Collaborative. A Xenocs GeniX 3D microfocus source was used with a Cu 

target to generate a monochromatic beam with a 0.154 nm wavelength. The instrument was 
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calibrated using silicon powder (NIST 640d). Scattering data were processed from the 

scattering vector q = 4πλ-1sinθ where λ is the X-ray wavelength and 2θ is the total scattering 

angle. A Pilatus 300 K detector (Dectris) was used to collect the two-dimensional (2D) 

scattering patterns. Samples were measured with the beam at an incident angle of 8o relative 

to the film plane. SAXSGUI software was used to radially integrate the 2D patterns to 

produce 1D profiles. 

Polymer Characterization 

All proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker 

Avance III HD 300. NMR samples were prepared in deuterated chloroform (CDCl3) as a 

concentration of ~1 wt%. Molecular weight (Mn) and molar mass dispersity (Ð) were 

determined using a Waters gel permeation chromatography (GCP) instrument equipped 

with a 515 HPLC pump, a 2410 refractive index detector, and three styragel columns (HR1, 

HR3, and HR4 in the effective molecular weight range of 0.1-5, 0.5-30, and 5-600 kg mol-

1, respectively). THF was used as the eluent at 30 oC at a flow rate of 1 ml min-1. The GPC 

was calibrated with PS standards (2570, 1090, 579, 246, 130, 67.5, 34.8, 18.1, 10.4, 3.4, 

1.6 kg mol-1) obtained from Polymer Laboratories. GPC samples were prepared by 

dissolving the sample in THF at a concentration of 2.0 mg ml-1 and were filtered (0.2 um 

PTFE) prior to injection, unless noted otherwise. Dynamic light scattering measurements 

of micelle hydrodynamic diameter were measured using a Zetasizer Nanoseries ZEN3690 

instrument. 

Synthesis of PEO-b-PHA 

The poly(ethylene oxide)-b-poly(hexyl acrylate), PEO-b-PHA, was synthesized by 

atom transfer radical polymerization (ATRP) using methods described elsewhere.17,18 

 



www.manaraa.com

 

131 

Synthesis of PEO-b-PMMA 

A poly(ethylene oxide)-b-poly(methyl methacrylate), PEO-b-PMMA, diblock 

copolymer was synthesized by a two-step synthesis starting from a Steglich esterification 

of poly(ethylene glycol)methyl ether to form a macroinitiator, followed by a neat atom 

transfer radical polymerization (ATRP) at 70 ˚C to grow the PMMA block. The procedure 

is described elsewhere in detail.17 The molar mass of PMMA (Mn = 13.4 kg mol-1) was 

determined by 1H NMR by comparison to the known PEO macroinitiator (Mn = 5.0 kg mol-

1). The molar mass dispersity (ÐPMMA = 1.13) was characterized by GPC. GPC samples 

were prepared in THF at concentrations of 10 mg mL-1, filtered through a 0.2 μm syringe 

filter prior to injection. 

Synthesis of PEO-b-PS 

The poly(ethylene oxide)-b-polystyrene, PEO-b-PS, was synthesized via activators 

regenerated by electron transfer for atom transfer radical polymerization (ARGET-

ATRP).29 The synthesis used the reagent ratio of [styrene] : [PEO-Br] : [Me6TREN] : 

[Cu(II)] : [Sn(EH)] = 200 : 1 : 0.105 : 0.005 : 0.1. The reaction was run neat. The PEO-Br 

macroinitiator (5 kg mol-1, 2.0 g) was dissolved in 9 ml of styrene monomer (filtered over 

alumina to remove inhibitor) and deaerated by three cycles of freezing in liquid nitrogen, 

pumping to <50 mtorr, and thawing. The catalyst and reducing agent with ligand (dissolved 

in toluene) were added during the last thaw cycle. The solution was stirred at room 

temperature for 30 min before initiating the polymerization by immersing the reaction 

vessel in a 90 oC oil bath and stirred at 150 rpm for 20 h. The reaction mixture was cooled 

before exposing the solution to air. The crude polymerization solution was diluted with 

THF and precipitated into a 3-fold excess of cold methanol (-78 oC using a dry ice bath). 

The collected polymer was dried on filter paper overnight. The molar mass of PS (Mn = 
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31.3 kg mol-1) was determined by 1H NMR by comparison to the known PEO 

macroinitiator (Mn = 5.0 kg mol-1). The molar mass dispersity (ÐPS = 1.12) was determined 

by GPC. 

CPMT with PEO-b-PHA 

When using PEO-b-PHA as the templating agent, RF resins were synthesized using two 

solvent systems, using methanol (designated as samples CM00) or tert-butanol (designated 

as samples CB00). Primarily for this template series, CM series of samples were dried as 

thin films from spin coating, drop casting, or dip coating; while the CB series was either 

freeze-dried or synthesized via phase separation method. 

For each sample, a two-part solution was created. The “template” solution combined 

polymer, solvent (i.e. methanol or butanol), and water; while the “material” solution 

contained resorcinol, solvent, water, and HCl. The water content for both solutions was 

held constant to ensure consistent water content regardless of M:T ratio for a given sample. 

The desired ratios of Template and Material solutions were combined; at this point, the 

sample solution is inert until formaldehyde is added. The addition of formaldehyde 

corresponds to the start of “gel time.” 

The details of the experiments highlighted within this chapter can be found in Appendix 

D. 

CPMT with PEO-b-PMMA 

Templating with PEO-b-PMMA followed a similar method as described above for PEO-

b-PHA, with the most significant change relating to the polymer solubility. While PEO-b-

PHA could be dissolved directly into methanol or butanol, PEO-b-PMMA was first 

micellized in water by solvent exchange (described later) and collected as a powder. This 
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micelle powder was dispersed in either dry methanol or dilute methanol-water solutions 

(e.g. 4 wt% water). 

Polymer micelles were formed and collected via a solvent exchange method.26 Briefly, 

ca. 50 mg of polymer was dissolved in 5 ml THF and added dropwise to stirring water (40 

ml, 500 rpm) at room temperature. The THF/water solution was placed on a rotary 

evaporated and concentrated over the course of several hours. The rotary evaporator bath 

was heated no higher than 45 oC. Micellized polymer powder were transferred to a 20 ml 

vial for storage. 

CPMT with PEO-b-PS 

Micellization studies for PEO-b-PS followed either the method used for PEO-b-PMMA 

(described above) or an adapted method based on that described by Skrabania, et al.28 

Briefly, 50 mg of polymer is dissolved in 10 ml THF (anhydrous) and added dropwise to 

hot water while stirring (400 ml, 90 oC, 500 rpm). The follow-up test, using THF/4 wt% 

H2O, followed the same general procedure: polymer was dissolved in anhydrous THF, 

sonicated 10 min. Water was added to give a 4 wt% solution and the solution was sonicated 

for an additional 10 min. This THF/H2O/polymer solution was added dropwise to 90 oC 

H2O while stirring at 600 rpm. The water content (4 wt%) was selected based on the 

average particle size in solution (Figure D.3). 

Trials substituting, for example, room temperature water for 12 M HCl did so on a 

volumetric basis. The details of the experiments highlighted within this chapter can be 

found in Appendix D. 
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CHAPTER 5: 

SUMMARY AND SUGGESTIONS FOR FUTURE WORK 
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Summary 

In the researches for the work presented herein, we have improved multiple techniques 

used to synthesize nanometer scale devices. One of the principle objectives of this 

dissertation was to develop a controlled deposition technique for BiVO4 that is compatible 

with anodic semiconductor underlayers like SnO2, with a secondary objective of 

demonstrating a heterojunction SnO2/BiVO4 photoanode on a high-aspect ratio substrate. 

A second principle objective was to expand the utility of a recently developed templating 

method (PMT) by controllably templating carbonaceous materials. 

We have successfully developed the first ALD process for single-phaseBiVO4.
1 In 

developing said process we have also recognized the importance of controlling and treating 

defect chemistries specific to the synthetic method used in fabricating BiVO4 photoanodes. 

To highlight the significance of this observation, we examined a body of literature that 

described a variety of postsynthetic treatments used to control the defect chemistries of 

BiVO4 as synthesized by various methods (electrodeposition, spray pyrolysis, spin coating, 

etc).2 Finally, ALD was used to grow SnO2 and BiVO4 on high-aspect ratio antimony-

doped tin oxide nanotubes (ATO-NTs) to achieve space efficient heterojunction 

photoanodes for solar water splitting,3 demonstrating for the first time the substrate-

conformed synthesis of ultrathin BiVO4 in conjunction with a hole-blocking underlayer. 

We have also expanded the level of control achieved with PMT by utilizing glassy 

micelles for templates. This enables a higher tolerance to changing solvent conditions, 

expanding PMT utility to nonaqueous media and phase-separation reactions. This was also 

the first demonstration of PMT with carbonaceous materials. Porous carbons were utilized 

as super capacitors, and the effects of altering the wall thickness to pore size ratio were 

examined. 
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Suggestions for Future Work 

Future works should be focused on expanding the versatility of CPMTs, ideally to 

realize a product with commercial appeal. The practicality in purely metal oxide or 

carbonaceous templates is self-evident and creating hybrid templates using carbon/metal 

oxide or carbon/nanoparticle would expand PMT into a wide range of catalysts of interest 

in a variety of fields, such as fuel cells, redox flow batteries, and waste management. To 

make these methods industrially appealing, the PMT process needs to use greener 

materials, avoiding carcinogens (e.g. formaldehyde, THF) and other acutely toxic materials 

(e.g. methanol); additionally, scalable methodologies need to be demonstrated. Combining 

these approaches – developing industrially-relevant conditions and demonstrating hybrid 

PMTs – would significantly increase the visibility of this unique nanomaterials technique. 

Future development of ALD BiVO4 should investigate the specifics of PEC activation, 

and especially should seek to improve the charge separation efficiency of ALD BiVO4 to 

increase the aspect ratio of ultrathin BiVO4-based photoanodes. This would realize the 

balance of charge separation with optical thickness. As highlighted in the Introduction, 

further improvements to charge separation efficiency should be guided by the defect 

chemistries present in a given synthetic route, incentivizing research in this direction – for 

example, in situ XPS for both the PEC and ALD processes.4,5 Such research could observe 

the formation of defects in real time during BiVO4 growth and their changes during solar 

water splitting. Tracking the defects within BiVO4 could allow for the development of 

targeted treatments to remediate detrimental defects and the insertion of beneficial defects 

– e.g. nitrogenation, etc., as described in the Introduction. Finally, combining ultrathin, 

charge-separation efficient BiVO4 with an efficient charge-injection catalyst, such as CoPi 

or FeOOH/NiOOH,6,7 in conjunction with the presented SnO2 heterojunction could 
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optimize the three primary pathways (photon absorption, charge separation, and charge 

injection) for this photocatalyst and would have the opportunity to achieve the highest 

reported efficiency for a BiVO4-based photoanode. 

Additionally, in the realm of carbon PMT, altering the doping of carbon can result in 

altered electrode characteristics – for example, nitrogenation for N-doped carbon, 

oxygenation by acids after carbonization, or templating in the presence of metals to 

introduce magnetic properties.8 The flexibility of porous carbons leaves a lot of room for 

growth in this direction, where developments of this technology would result in increased 

group recognition and the potential for commercialization. 
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• For reproduction of material from PCCP: Reproduced from Ref. XX with 

permission from the PCCP Owner Societies. 
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APPENDIX B: 

SUPPLEMENTAL INFORMATION TO CHAPTER 2 
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Estimation of Host-Guest Architecture Needed for Efficient Light Harvesting  

Host-guest architectures allow the decoupling of optical absorption from carrier transport. 

Here we consider the characteristics needed for a host-guest architecture based upon 30 nm 

SF-ALD BiVO4 films. Within the 2.4 eV bandgap of BiVO4,
1–3 the AM 1.5 spectrum has 

the most photon flux near the band-edge at 510 nm. Considering a target of 90% light 

harvesting efficiency at the 510 nm band edge, the corresponding optical thickness may be 

calculated using Equation B.1: 

𝐴 =  𝛼𝑙             (B.1) 

where A, α, and l are the absorbance, attenuation coefficient, and optical thickness of the 

film. The attenuation of a 30 nm film may thus be used to calculate the optical thickness 

needed for 90% light harvesting via the attenuation coefficient. Here the absorbance was 

calculated from the measured absorptance value using Equation B.2: 

𝐴 =  −log (1 −
𝐴%

100
)     (B.2) 

where A% is the absorptance as a percentage. The attenuation coefficient of the 30 nm 

MeOH-SF-ALD film was thus calculated to be 0.001433 nm-1(at =510 nm). This 

attenuation coefficient was thus used to calculate that 90% absorptance would occur with 

an optical thickness of 697 nm. This value provides considerable insight into the design of 

host-guest architectures with efficient light harvesting. For example, assuming all layers 

are normal to the incident light, this optical thickness corresponds to a roughness factor of 

(697 nm)/(30 nm)=23.2. In other words, 23.2 such 30 nm layers would be needed to reach 

the described light harvesting target. 
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Figure B.1 The MeOH pulse length was optimized 

to saturate the inhibition of V2O5 growth using a 

pulse sequence of [MeOH-VTIP-W]x. 

Figure B.2 GIWAXS of calcined MeOH-BVO films of 7.5 (a) and 15-75 nm (b) thickness. 

Sample descriptions in Table 2.4. 
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Sample Name JJ-V (mA/cm2) JIPCE (mA/cm2) Percent Difference 

7.5nm-1k 0.010±0.002 0.003±0.001 63.9 

15nm-2k 0.075±0.005 0.026±0.005 64.6 

22.5nm-3k 0.11±0.01 0.043±0.007 62.4 

30nm-4k 0.35±0.01 0.20±0.02 44.4 

45nm-6k 0.31±0.02 0.18±0.03 42.2 

60nm-8k 0.46±0.02 0.33±0.03 29.4 

75nm-10k 0.57±0.03 0.66±0.03 15.2 

 

Figure B.3 GI-WAXS of bare FTO and FTO/BiVO4 

(30 nm, calcined MeOH-BVO where x=4,000 cycles). 

Table B.1 Comparison of mean front-side photocurrent at 0.6 V vs RHE (JJ-V) to 

photocurrent calculated from IPCE (JIPCE). Data is from calcined SF-BVO films. Samples 

are the same as those described in Table 2.4. JIPCE was determined by multiplying IPCE 

(%) by the AM 1.5 spectrum (mA/cm2/nm) before integrating over wavelength (nm). 
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Figure B.4 The photocurrent performance of 

bismuth vanadate films prepared by conventional 

ALD and SF-ALD were compared under simulated 

AM 1.5 illumination. The conventional ALD 

procedure is identical to the SF-ALD procedure 

sans alcohol surface functionalization. The 

conventional ALD samples were 55.6 nm thick and 

were calcined at 450 °C for 1 hr and etched in 1 M 

NaOH to remove excess V2O5. The comparable SF-

ALD samples were denoted at 60nm-8k in the text. 

Figure B.5 Chronoamperometry of SF-ALD 

film 30nm-4k over 17hrs of continuous 

simulated AM 1.5 illumination at an applied 

potential of 0.6 V vs RHE. The electrolyte 

was 1.0 M potassium borate with a pH of 9.36 

with 0.2 M Na2SO3 as hole scavenger. 
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Figure B.6. XPS of calcined and PEC activated 30nm-4k films, showing regions for (a) Bi 

4f and (b) V 2p. 

Figure B.7. GI-WAXS measurements on 

calcined 30 nm MeOH-BVO films without 

and with the photoelectrochemical activation. 

Control and Activated samples are the same 

as those described in Table 2.6. 
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Step Label Device Index Device Name Action Value Branch 

1  28 Pump  0  

2  9 EXPO_Heater Set_to_On 0  
3  8 MFC_Flow Set_to_Value 200  
4  1 VTIP Heater Set_to_Value 45  
5  2 BiPh3 Heater Set_to_Value 130  
6  4 Metal Precursor Manifold Set_to_Value 130  
7  5 Oxidant Manifold Set_to_Value 130  
8  7 Chamber_Door_Heat Set_to_Value 130  
9  6 Chamber_Heat Set_to_Value 130  
10  6 Chamber_Heat Wait_Until_Set_Point_+/- 1  
11  22 Delay_(Sec.)  7200  
12 DepoLoop 22 Delay_(Sec.)  0.1  
13 VLoop 8 MFC_Flow Set_to_Value 40  
14  8 MFC_Flow Wait_Until_< 45  
15  10 EXPO_Actuator Set_to_Closed 0  
16  22 Delay_(Sec.)  0.2  
17 MeOH 18 ALD_7_Actuator Pulse_(mSec.) 25  
18  22 Delay_(Sec.)  1  
19  10 EXPO_Actuator Set_to_Open 0  
20  8 MFC_Flow Set_to_Value 200  
21  22 Delay_(Sec.)  10  
22  8 MFC_Flow Set_to_Value 5  
23  8 MFC_Flow Wait_Until_< 6  
24  22 Delay_(Sec.)  7  
25  10 EXPO_Actuator Set_to_Closed 0  
26  22 Delay_(Sec.)  0.2  
27 VTIP 13 ALD_2_Actuator Pulse_(mSec.) 2000  
28  22 Delay_(Sec.)  1  
29  10 EXPO_Actuator Set_to_Open 0  
30  8 MFC_Flow Set_to_Value 200  
31  22 Delay_(Sec.)  10  
32  8 MFC_Flow Set_to_Value 40  
33  8 MFC_Flow Wait_Until_< 45  

Figure B.8. Comparison of surface structure (a) before and (b) after photoelectrochemical 

activation. Images were acquired on calcined 30 nm MeOH-BVO films deposited on FTO. 

Table B.2. All parameters used in the MeOH-SF-ALD deposition. 
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34  10 EXPO_Actuator Set_to_Closed 0  
35  22 Delay_(Sec.)  0.2  
36 water 16 ALD_5_Actuator Pulse_(mSec.) 25  
37  22 Delay_(Sec.)  1  
38  10 EXPO_Actuator Set_to_Open 0  
39  8 MFC_Flow Set_to_Value 200  
40  22 Delay_(Sec.)  10  
41  24 Loop_n_Times Number 1 VLoop 

42 BiLoop 8 MFC_Flow Set_to_Value 40  
43  8 MFC_Flow Wait_Until_< 45  
44  11 N2_Inject  0  
45  10 EXPO_Actuator Set_to_Closed 0  
46  22 Delay_(Sec.)  0.2  
47 BiPH3 14 ALD_3_Actuator Pulse_(mSec.) 2000  
48  22 Delay_(Sec.)  1  
49  10 EXPO_Actuator Set_to_Open 0  
50  8 MFC_Flow Set_to_Value 200  
51  22 Delay_(Sec.)  10  
52  8 MFC_Flow Set_to_Value 40  
53  8 MFC_Flow Wait_Until_< 45  
54  10 EXPO_Actuator Set_to_Closed 0  
55  22 Delay_(Sec.)  0.2  
56 water 16 ALD_5_Actuator Pulse_(mSec.) 25  
57  22 Delay_(Sec.)  1  
58  10 EXPO_Actuator Set_to_Open 0  
59  8 MFC_Flow Set_to_Value 200  
60  22 Delay_(Sec.)  10  
61  24 Loop_n_Times Number 1 BiLoop 

62  24 Loop_n_Times Number 3000 DepoLoop 

63  22 Delay_(Sec.)  3600  
64  8 MFC_Flow Set_to_Value 5  
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Method Precursors 
Conductivity 

(σ); [Scm-1] 

Mobility (μ); 

[cm2V-1s-1] 

Carrier concentration; 

[# cm-3] 

Spray pyrolysis1 SnCl4, air 25 4 3.3 x 1019 

Spray pyrolysis2 SnCl4, air 87 6.1 8.8 x 1021 

CVD (at 450 oC)3 SnCl4, H2O 142 9.6 9.1 x 1019 

CVD (at 450 oC)4 SnCl4, air 18 -- -- 

ALD5 TDMASn, O3 2.9 2.8 6.8 x 1018 

ALD6 TDMASn, O3 3.6 -- -- 

ALD (this work) TDMASn, O3 2.4 x 10-4 0.229 7.7 x 1015 

 

Applied-bias photon-to-charge efficiency (ABPE) 

ABPE was calculated using: 

ABPE(%) = [
𝐽𝑝ℎ𝑜𝑡𝑜(mA cm−2)×(𝐸𝑟𝑐−𝐸𝑎𝑝𝑝)(V)

𝑃𝑝ℎ𝑜𝑡𝑜(mW cm−2)
]

AM 1.5G

× 100   (C1) 

where Jphoto is the measured photocurrent at a given applied potential (Eapp), Pphoto is the 

power density of AM 1.5G (100 mW cm-2). Erc corresponds to the cell potential of the 

redox couple, in this case 1.23 VRHE for water splitting. 

 

 
 

 
  

Table C.1 Comparison of electrical properties for SnO2 from different synthetic methods. 

Figure C.1. SEM micrograph of conformal 2 nm SnO2 on 

a Si wafer following heat treatment, at 8o tilt relative to 

the probe. 
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Roughness factor and Optical thickness calculations 

Roughness factor (Rf) is the ratio of total surface area to the projected substrate area. 

The Rf for cylindrical nanotubes on a flat substrate can be calculated using: 

𝑅𝑓 = ℎ𝜋𝑑𝜌 + 1       (C2) 

where h and d correspond to the height and diameter of nanotubes, and ρ represents the 

areal tube density. In this study, ρ was found to be 10.44 nanotubes μm-2 based on SEM 

measurements. 

The optical thickness, l, includes the increase in optical absorptance when thin absorber 

layers of thickness n are deposited on a 3D host with roughness factor >1. Ignoring 

diffusive scattering, the optical thickness of samples in this study were estimated using the 

total volume of BiVO4 calculated from simple geometric considerations: 

𝑙 = 𝑉𝐵𝑉𝑂,𝑐𝑦𝑙 ∙ 𝜌 + 𝑛       (C3) 

where 

𝑉𝐵𝑉𝑂,𝑐𝑦𝑙 = ℎ𝜋(𝑅2 − 𝑟2)      (C4) 

and where R corresponds to the combined host-guest nanotube radius and r corresponds to 

the host-only nanotube radius. 

 

 
 

Step Label 
Device 

Index 
Device Name Action Value Branch 

1  28 Pump  0  

2  9 EXPO_Heater Set_to_On 0  

3  8 MFC_Flow Set_to_Value 200  

4  0 Precursor_1_Heat Set_to_Value 55  

5  4 Manifold_1_Heat Set_to_Value 100  

6  5 Manifold_2_Heat Set_to_Value 130  

7  7 
Chamber_Door_Hea

t 
Set_to_Value 115  

8  6 Chamber_Heat Set_to_Value 115  

9  6 Chamber_Heat 
Wait_Until_Set_Point_

+/- 
1  

10 clean 17 ALD_6_Actuator Pulse_(mSec.) 100  

Table C.2 ALD of SnO2 with TDMASn and O3 
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11  22 Delay_(Sec.)  10  

12  24 Loop_n_Times Number 100 clean 

13  22 Delay_(Sec.)  1200  

14 loopA 8 MFC_Flow Set_to_Value 5  

15  8 MFC_Flow Wait_Until_< 6  

16  22 Delay_(Sec.)  7  

17  10 EXPO_Actuator Set_to_Closed 0  

18  22 Delay_(Sec.)  0.2  

19 
SNDM

A 
12 ALD_1_Actuator Pulse_(mSec.) 1500  

20  22 Delay_(Sec.)  1  

21  10 EXPO_Actuator Set_to_Open 0  

22  8 MFC_Flow Set_to_Value 200  

23  22 Delay_(Sec.)  10  

24  8 MFC_Flow Set_to_Value 40  

25  8 MFC_Flow Wait_Until_< 45  

26  10 EXPO_Actuator Set_to_Closed 0  

27  22 Delay_(Sec.)  0.2  

28 ozone 17 ALD_6_Actuator Pulse_(mSec.) 100  

29  22 Delay_(Sec.)  1  

30  10 EXPO_Actuator Set_to_Open 0  

31  8 MFC_Flow Set_to_Value 200  

32  22 Delay_(Sec.)  10  

33  24 Loop_n_Times Number 120 loopA 

34  22 Delay_(Sec.)  10  

35  8 MFC_Flow Set_to_Value 5  

 

 
 

Step Label 
Device 
Index 

Device Name Action Value Branch 

1  28 Pump  0  
2  9 EXPO_Heater Set_to_On 0  
3  1 Precursor_2_Heat Set_to_Value 45  
4  2 Precursor_3_Heat Set_to_Value 130  
5  4 Manifold_1_Heat Set_to_Value 130  
6  5 Manifold_2_Heat Set_to_Value 130  

7  7 
Chamber_Door_He

at 
Set_to_Value 130  

8  6 Chamber_Heat Set_to_Value 130  

9  6 Chamber_Heat 
Wait_Until_Set_Point_

+/- 
1  

10  8 MFC_Flow Set_to_Value 200  
11  22 Delay_(Sec.)  7200  

12 DepoLoop 22 Delay_(Sec.)  0.1  

13 VLoop 8 MFC_Flow Set_to_Value 40  
14  8 MFC_Flow Wait_Until_< 45  
15  10 EXPO_Actuator Set_to_Closed 0  
16  22 Delay_(Sec.)  0.2  
17 MeOH 18 ALD_7_Actuator Pulse_(mSec.) 50  
18  22 Delay_(Sec.)  2  
19  10 EXPO_Actuator Set_to_Open 0  
20  8 MFC_Flow Set_to_Value 200  
21  22 Delay_(Sec.)  10  

Table C.3 SF-ALD of BiVO4 
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22  8 MFC_Flow Set_to_Value 5  
23  8 MFC_Flow Wait_Until_< 6  
24  22 Delay_(Sec.)  7  
25  10 EXPO_Actuator Set_to_Closed 0  
26  22 Delay_(Sec.)  0.2  
27 VTIP 13 ALD_2_Actuator Pulse_(mSec.) 2000  
28  22 Delay_(Sec.)  1  
29  10 EXPO_Actuator Set_to_Open 0  
30  8 MFC_Flow Set_to_Value 200  
31  22 Delay_(Sec.)  10  
32  8 MFC_Flow Set_to_Value 40  
33  8 MFC_Flow Wait_Until_< 45  
34  10 EXPO_Actuator Set_to_Closed 0  
35  22 Delay_(Sec.)  0.2  
36 water 16 ALD_5_Actuator Pulse_(mSec.) 100  
37  22 Delay_(Sec.)  1  
38  10 EXPO_Actuator Set_to_Open 0  
39  8 MFC_Flow Set_to_Value 200  
40  22 Delay_(Sec.)  10  
41  24 Loop_n_Times Number 1 VLoop 

42 BiLoop 8 MFC_Flow Set_to_Value 40  
43  8 MFC_Flow Wait_Until_< 45  
44  11 N2_Inject  0  
45  10 EXPO_Actuator Set_to_Closed 0  

46  22 Delay_(Sec.)  0.2  
47 BiPH3 14 ALD_3_Actuator Pulse_(mSec.) 2000  
48  22 Delay_(Sec.)  1  
49  10 EXPO_Actuator Set_to_Open 0  
50  8 MFC_Flow Set_to_Value 200  
51  22 Delay_(Sec.)  10  
52  8 MFC_Flow Set_to_Value 40  
53  8 MFC_Flow Wait_Until_< 45  
54  10 EXPO_Actuator Set_to_Closed 0  
55  22 Delay_(Sec.)  0.2  
56 water 16 ALD_5_Actuator Pulse_(mSec.) 25  
57  22 Delay_(Sec.)  1  
58  10 EXPO_Actuator Set_to_Open 0  
59  8 MFC_Flow Set_to_Value 200  
60  22 Delay_(Sec.)  10  
61  24 Loop_n_Times Number 1 BiLoop 

62  24 Loop_n_Times Number 4000 
DepoLoo

p 

63  22 Delay_(Sec.)  7200  
64  8 MFC_Flow Set_to_Value 5  
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Figure D.1. Effect of curing time at (a) 150 or (b) 200 oC on RF resin morphology. PEO-b-PHA as 

template; samples from CM05. 

Figure D.2. Effect of dispersing solvent on PEO-

b-PMMA micelle size. Solid lines: dry methanol 

– Dashed lines: MeOH/H2O (96/4 wt%) mixture. 
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Selected Experiments from CPMT with PEO-b-PHA 

CM01 

Spin coated solutions were mixed by combining two solutions: one of polymer in 

methanol and the other of resorcinol in methanol. This combined solution was divided into 

four aliquots, where different amounts of 0.25 M HCl in methanol (made by diluting 

concentrated HCl with methanol) were added. Solutions were sonicated 10 min. 

Formaldehyde (37 wt% aqueous) was added immediately prior to spin coating. 

Spin coating took place in a home-built humidity-controlled spin coater at ~15% relative 

humidity (RH) at 500 rpm for 20 s. Spin-coated substrates (glass coverslips) were aged in 

air at room temperature. 

Drop casting took place in air at room temperature. Two drops of sample solution were 

applied to glass coverslips; substrates dried at room temperature. 

It was noted that samples became pinkish-red after ~2 min post spin coating. Drop-cast 

samples took longer to dry and set (becoming red/pink after ~23 min). Spin coated samples 

had better clarity in general compared to drop cast samples. 

All films were set to age at 150 oC for 20 h while flowing 15% RH. 

Figure D.3. Effect water concentration in THF on 

polymer micelle size distribution. 
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CM05 

Solutions were made following the procedure described above. This experiment looked 

at aging parameters; in particular, (i) the effect of holding a sample in the spin coater (under 

controlled humidity) for a set time prior to aging and (ii) aging temperature (either 150 or 

200 oC) overnight. 

CB01 and CB02 

Polymer was dissolved in t-butanol and combined with HCl. Samples of resorcinol were 

weighed out to separate vials and dissolved in aliquots from the butanol solution. It was 

noted that the resorcinol was difficult to dissolve in butanol, requiring 10 min sonication. 

Formalin (37 % aqueous formaldehyde) was added to the solutions 30 min before freesing 

in a dry ice/isopropanol bath. Frozen solvent was sublimed by placing frozen solutions in 

a room temperature vacuum oven overnight. 

CB15 and CB18 

CB15 examined the effect of gel temperatures at 80 or -4 oC over 24 h. Polymer was 

dissolved in solvent and HCl; this solution was used to dissolve resorcinol, with sonication 

for 15 min to dissolve resorcinol. Formaldehyde (37% aq) was added prior to dividing the 

solution into two vials for gelling. 

CB18 examined the effect of higher weight-contents of water in solution. The standard 

water content prior to this test was 10 wt% (prior to formalin addition) and 26 wt% (after 

formalin addition). Tested contents here were 10, 13.5, and 17 wt% (26, 28, and 31 wt% 

after formalin addition). As before, polymer was dissolved in butanol and HCl. This 

polymer/butanol solution was used to dissolve resorcinol (sonication 15 min). After adding 

formalin, solutions were gelled at 60 or 80 oC. 
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CB08 

This experiment examined the effect of changing the material to template (M:T) mass 

ratio on the resulting material structure from a range of 0.2-3.0. Material is resorcinol and 

template is polymer AK2 from Kayla Lantz. 

For M:T series, two stock solutions – one for material, the other for template – are mixed 

at the desired ratios. The template stock solution (made up of polymer at 0.15 g/ml, butanol, 

and water) was varied while the material stock was held constant (resorcinol, HCl, butanol, 

and water). The water content of both solutions was kept as similar as possible to maintain 

a constant water content for all ratios. 

CB08 stock solutions started at 10 wt% water, R:C ratio of 4.00:1, R:F ratio of 1:3.00, 

and resorcinol concentration of 0.60 M. 
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